We report a versatile Cu-catalyzed multicomponent polymerization (MCP) technique that enables the synthesis of high-molecular-weight, defect-free poly(N-sulfonylamidines) from monomers of diynes, sulfonyl azides, and diamines. Through a series of optimizations, we discovered that the addition of excess triethylamine and the use of N,N'-dimethylformamide as a solvent are key factors to ensure efficient MCP. Formation of cyclic polyamidines was a side reaction during polymerization, but it was readily controlled by using diynes or diamines with long or rigid moieties. In addition, this polymerization is highly selective for three-component reactions over click reactions. The combination of the above factors enables the synthesis of high-molecular-weight polymers, which was challenging in previous MCPs. All three kinds of monomers (diynes, sulfonyl azides, and diamines) are readily accessible and stable under the reaction conditions, with various monomers undergoing successful polymerization regardless of their steric and electronic properties. Thus, we synthesized various high-molecular-weight, defect-free polyamidines from a broad range of monomers while overcoming the limitations of previous MCPs, such as low conversion and defects in the polymer structures.
Graft and dendronized polymers have attracted much attention in the polymer community, and there have been significant efforts to develop better synthetic methods. Herein, we report the highly efficient synthesis of graft and dendronized polymers by using Cu-catalyzed multicomponent polymerization (MCP). Based on diversity-oriented synthesis, we prepared a library of various graft and dendronized polymers from combinations of three types of monomers (mono-functionalized alkynes, bis-sulfonyl azides, and diamines/diols) that are bench stable and readily accessible. After reaction optimization, 54 samples of high-molecular-weight graft and dendronized polymers were prepared, the MCP method allowing simultaneous manipulation of the structures of both the main chains and the side chains. Moreover, because of the severe steric hindrance of the side chains, these polymers adopted extended conformations, as shown by the large shape parameter in solution. Also, the extended morphology of the single polymer chains was directly visualized by atomic force microscopy and transmission electron microscopy in the solid state. Most importantly, this diversity-oriented polymerization became possible because of highly step-economical and efficient one-step MCP, paving the way toward the easily tunable synthesis of graft and dendronized polymers.
Efficient synthesis of polyimidates has been a great challenge because of the difficulty of imidate bond formation and limited substrate scope. Here, we describe a successful method for the synthesis of various poly(Nsulfonylimidates) using Cu-catalyzed multicomponent polymerization (MCP). Minimizing water contamination in the polymerization, which results in low-molecular-weight oligomers, allows various combinations of three types of monomers (diynes, sulfonyl azides, and diols) that are bench stable and readily accessible, providing access to a library of polyimidates. Moreover, the formation of polyimidates is highly selective over the conventional click reactions. Most importantly, this report demonstrates a successful MCP that overcomes the drawbacks of previous MCP methods showing narrow monomer scope and producing low-molecular-weight polymers.
This publication is made publicly available in the institutional repository of Wageningen University and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with explicit consent by the author.Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is entitled to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.
Transition-metal-catalyzed transformations of the carbon–fluorine bond not only tackle an interesting problem of challenging bond activation but also offer new synthetic strategies where the relatively inert C–F bond is converted to versatile functional groups. Herein we report a practical cobalt-catalyzed silylation of aryl fluorides that uses a cheap electrophilic silicon source with magnesium. This method is compatible with various silicon sources and can be operated under aerobic conditions. Mechanistic studies support the in situ formation of a Grignard reagent, which is captured by the electrophilic silicon source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.