The Nafion® electrolyte membrane, which provides a proton pathway, is an essential element in fuel cell systems. Thermal treatment without additional additives is widely used to modify the mechanical properties of the membrane, to construct reliable and durable electrolyte membranes in the fuel cell. We measured the microscopic mechanical properties of thermally annealed membranes using atomic force microscopy with the two-point method. Furthermore, the macroscopic property was investigated through tensile tests. The microscopic modulus exceeded the macroscopic modulus over all annealing temperature ranges. Additionally, the measured microscopic modulus increased rapidly near 150 °C and was saturated over that temperature, whereas the macroscopic modulus continuously increased until 250 °C. This mismatched micro/macroscopic reinforcement trend indicates that the internal reinforcement of the clusters is induced first until 150 °C. In contrast, the reinforcement among the clusters, which requires more thermal energy, probably progresses even at a temperature of 250 °C. The results showed that the annealing process is effective for the surface smoothing and leveling of the Nafion® membrane until 200 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.