This paper discusses the economic operation strategy of the energy hub, which is being established in South Korea. The energy hub has five energy conversion devices: a turbo expander generator, a normal fuel cell, a fuel cell with a hydrogen outlet, a small-scale combined heat and power device, and a photovoltaic device. We are developing the most economically beneficial operation strategy for the operators who own the hub, without making any systematic improvements to the energy market. First, sixteen conversion efficiency matrices can be achieved by turning each device (except the PV) on or off. Next, even the same energy must be divided into different energy flows according to price. The energy flow is controlled to obtain the maximum profit, considering the internal load of the energy hub and the price fluctuations of the energy market. Using our operating strategy, the return on investment period is approximately 9.9 years, which is three years shorter than that without the operating strategy.
When supplying natural gas, KOGAS intends to utilize the new energy by installing a system that runs the generator using the energy generated when the high-pressure natural gas is reduced to low pressure, that is, TEG. In the past, the energy generated by decompressing natural gas in the supply management station was thrown into the air, but by using this to generate electricity, high-quality new energy that does not emit greenhouse gases and consumes fuel is obtained. This paper examines the characteristics of TEG power generation, examines the TEG pilot project and demonstration project conducted by Korea Gas Corporation, and discusses the voltage control scheme and grid interconnection.
-Natural gas through pipeline is supplied to consumers after its pressure gets down compulsorily. The waste pressure energy of this process can be restored by use of turbo expander which can produce electricity. So, turbo expander conducts two functions -pressure reduction and power generation. The power amount is the enthalpy difference between the inlet and outlet states. The five main factors which affect economic profit are facility price, produced power amount, pre-heating amount, electricity cost, and fuel gas cost. Power generation depends mainly on flow amount because inlet and outlet states are fixed. A methodology to estimate economy in irregular flow pattern is proposed and using this way, a case study was carried out.
In general, natural gas is used as GHP(Gas Engine Driven Heat Pump) fuel. On this study, the influences of different natural gas heating value on GHP were evaluated. As a result of engine test & field test using low heating value gas(9,800 kcal/Nm 3 ) as fuel, the engine power was reduced slightly, however the performance of start-up, the stability of operation and the characteristics of emission gas were almost similar. So it is considered that the normal operation of GHP is possible without any tuning when the low heating value(9,800 kcal/Nm 3 ) of natural gas was used as fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.