Stability of high-beta plasmas is studied on discharges from a series of JET experiments on steady-state and hybrid advanced scenarios, with a wide range of q-profiles and a range of normalized beta extending to β N = 4. Bursting and continuous forms of global n = 1 instabilities limit the achievable β N or degrade confinement. Stability boundaries in terms of q min and pressure peaking are determined. For relatively broad pressure profiles the limit decreases from β N = 4 at q min = 1 to β N = 2 at q min = 3, while at fixed q min it decreases with increasing pressure peaking. Triggering mechanisms and the internal structure of continuous n = 1 instabilities are analysed. A new form of instability that grows on typical resistive timescales but has internal kink structure is identified.
We report a discovery of a fusion plasma regime suitable for commercial fusion reactor where the ion temperature was sustained above 100 million degree about 20 s for the rst time. Nuclear fusion as a promising technology for replacing carbon-dependent energy sources has currently many issues to be resolved to enable its large-scale use as a sustainable energy source. State-of-the-art fusion reactors cannot yet achieve the high levels of fusion performance, high temperature, and absence of instabilities required for steady-state operation for a long period of time on the order of hundreds of seconds. This is a pressing challenge within the eld, as the development of methods that would enable such capabilities is essential for the successful construction of commercial fusion reactor. Here, a new plasma con nement regime called fast ion roled enhancement (FIRE) mode is presented. This mode is realized at Korea Superconducting Tokamak Advanced Research (KSTAR) and subsequently characterized to show that it meets most of the requirements for fusion reactor commercialization. Through a comparison to other well-known plasma con nement regimes, the favourable properties of FIRE mode are further elucidated and concluded that the novelty lies in the high fraction of fast ions, which acts to stabilize turbulence and achieve steady-state operation for up to 20 s by self-organization. We propose this mode as a promising path towards commercial fusion reactors.
A decade-long operation of the Korean Superconducting Tokamak Advanced Research (KSTAR) has contributed significantly to the operation of superconducting tokamak devices and the advancement of tokamak physics which will be beneficial for the ITER and K-DEMO programs. Even with limited heating capability, various conventional as well as new operating regimes have been explored and have achieved improved performance. As examples, a long pulse high-confinement mode operation with and without an edge-localized mode (ELM) crash was well over 70 and 30 s, respectively. The unique capabilities of KSTAR allowed it to improve the capability of controlling harmful instabilities, and they have been instrumental in uncovering much new physics. The highlights are that the L/H transition threshold power is sensitive to the resonant magnetic perturbation (RMP) and insensitive to non-resonant magnetic perturbation. Co-Ip offset rotation dominated by an electron channel predicted by general neoclassical toroidal viscosity theory was confirmed. Improved heat dispersal in a divertor system using three rows of rotating RMP was demonstrated and predictive control of the ELM-crash with a priori modeling was successfully tested. In magnetohydrodynamic physics, validation of the full reconnection model (i.e. q0 > 1 right after the sawtooth crash) and self-consistent validation of the anisotropic distribution of turbulence amplitude and flow in the presence of the 2/1 island with theoretical models were achieved. The turbulence amplitude induced by RMP was linearly increased with the slow RMP coil current ramp-up time (i.e. the magnetic diffusion time scale). The Dα spikes (i.e. ELM-crash amplitude) was linearly decreased with the turbulence amplitude and not correlated with the perpendicular electron flow. In the turbulence area, a non-diffusive ‘avalanche’ transport event and the role of a quiescent coherent mode in confinement were studied. To accommodate the anticipation of a higher performance of the KSTAR plasmas with the increased heating powers, a new divertor/internal interface with a full active cooling system will be implemented after a full test of the new heating (neutral beam injection II and electron cyclotron heating) and current drive (CD) (Helicon and lower hybrid CD) systems. An upgrade plan for the internal hardware, heating systems and efficient CD system may allow for a long pulse operation of higher performance plasmas at βN > 3.0 with f bs ~ 0.5 and Ti > 10 keV.
A neural network solving Grad-Shafranov equation constrained with measured magnetic signals to reconstruct magnetic equilibria in real time is developed. Database created to optimize the neural network's free parameters contain off-line EFIT results as the output of the network from 1, 118 KSTAR experimental discharges of two different campaigns. Input data to the network constitute magnetic signals measured by a Rogowski coil (plasma current), magnetic pick-up coils (normal and tangential components of magnetic fields) and flux loops (poloidal magnetic fluxes). The developed neural networks fully reconstruct not only the poloidal flux function ψ (R, Z) but also the toroidal current density function j φ (R, Z) with the off-line EFIT quality. To preserve robustness of the networks against a few missing input data, an imputation scheme is utilized to eliminate the required additional training sets with large number of possible combinations of the missing inputs.
Advanced operation scenarios such as high poloidal beta (βP) or high q min are promising concepts to achieve the steady-state high-performance fusion plasmas. However, those scenarios are prone to substantial Alfvénic activity, causing fast-ion transport and losses. Recent experiments with the advanced operation scenario on KSTAR tokamak have shown that the electron cyclotron current drive (ECCD) is able to mitigate and suppress the beam-ion driven toroidal Alfvén eigenmodes (TAEs) for over several tens of global energy confinement time. Co-current directional intermediate off-axis ECCD lowers the central safety factor slightly and tilts the central q-profile shape so that the continuum damping in the core region increases. Besides, the rise of central plasma pressure and increased thermal-ion Landau damping contribute to TAE stabilization. While the TAEs are suppressed, neutron emission rate and total stored energy increase by approximately 45% and 25%, respectively. Fast-ion transport estimated by TRANSP calculations approaches the classical level during the TAE suppression period. Substantial reduction in fast-ion loss and neutron deficit is also observed. Enhancement of fast-ion confinement by suppressing the TAEs leads to an increase of non-inductive current fraction and will benefit the sustainment of the long-pulse high-performance discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.