AC electrokinetics is rapidly becoming a foundational tool for lab-on-a-chip systems due to its versatility and the simplicity of the components capable of generating them. Predicting the behavior of fluids and particles under non-uniform AC electric fields is important for the design of next generation devices. Though there are several important phenomena that contribute to the overall behavior of particles and fluids, current predictive techniques consider special conditions where only a single phenomenon may be considered. We report a 2D numerical simulation, using COMSOL Multiphysics, which incorporates the three major AC electrokinetic phenomena (dielectrophoresis, AC electroosmosis and electrothermal effect) and is valid for a wide range of operational conditions. Corroboration has been performed using experimental conditions that mimic those of the simulation and shows good qualitative agreement. Furthermore, a broad range of experiments has been performed using four of the most widely reported devices under varying conditions in order to show their behavior as it relates to the simulation. The large number of experimental conditions reported, together with the comprehensive numerical simulation, will help provide guidelines for scientists and engineers interested in incorporating AC electrokinetics into their lab-on-a-chip systems.
This paper describes a novel wafer bonding technique using microwave heating of parylene intermediate layers. The bonding is achieved by parylene deposition and thermal lamination using microwave heating. Variable frequency microwave heating provides uniform, selective and rapid heating for parylene intermediate layers. The advantages of this bonding technique include short bonding time, low bonding temperature, relatively high bonding strength, less void generation and low thermal stress. In addition, the intermediate layer material, parylene, is chemically stable and biocompatible. This bonding technique can be used for structured wafers also because parylene provides a conformal coating. Therefore, this is a very attractive bonding tool for many MEMS devices. The bonding strength and uniformity were evaluated using diverse tools. Fracture mechanisms and the effects of bonding parameters and an adhesion promoter were also investigated. The bonding with a structured wafer was also successfully demonstrated.
This paper presents a novel liver model that mimics the liver sinusoid where most liver activities occur. A key aspect of our current liver model is a layered co-culture of primary rat hepatocytes (PRHs) and primary rat liver sinusoidal endothelial cells (LSECs) or bovine aortic endothelial cells (BAECs) on a transwell membrane. When a layered co-culture was attempted with a thin matrigel layer placed between hepatocytes and endothelial cells to mimic the Space of Disse, the cells did not form completely separated monolayers. However, when hepatocytes and endothelial cells were cultured on the opposite sides of a transwell membrane, PRHs co-cultured with LSECs or BAECs maintained their viability and normal morphology for 39 and 57 days, respectively. We assessed the presence of hepatocyte-specific differentiation markers to verify that PRHs remained differentiated in the long-term co-culture and analyzed hepatocyte function by monitoring urea synthesis. We also noted that the expression of cytochrome P-450 remained similar in the co-cultured system from Day 13 to Day 48. Thus, our novel liver model system demonstrated that primary hepatocytes can be cultured for extended times and retain their hepatocyte-specific functions when layered with endothelial cells.
Recently, direct inkjet printing of conductive solutions has received much attention in the microfluidics and lab-on-a-chip community because of its low-cost and mask-free deposition of electrodes on various substrates. However, the investigation of micro-scale direct inkjet printing on the polydimethylsiloxane (PDMS) substrate has not been completed. Here we present a direct inkjet printing technique to produce narrow (40-90 µm) silver microelectrodes on PDMS. Extensive experimental characterization studies on the pattern uniformity and electrical properties of the printed silver lines are presented. The effect of major printing parameters such as drop spacing, sintering temperature and duration, platen temperature, and nozzle temperature have been thoroughly investigated. We also investigated multiple layer printing as well as the effects of thermal expansion and mechanical bending. In order to demonstrate the utility of the inkjet-printed silver microelectrode, we fabricated both quadruple and castellated electrodes, and conducted dielectrophoretic manipulation of microbeads. The results clearly show that the printed silver electrodes can be used for electrokinetic applications in PDMS microchip devices. We believe that the direct inkjet printing of silver ink on PDMS presented here can provide a very convenient way of creating microelectrodes on PDMS devices for a variety of applications in the MEMS, microfluidics, and lab-on-a-chip communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.