Long period oscillations of the gyroresonant emission from sunspot atmospheres are studied. Time series data generated from the sequences of images obtained by the Nobeyama Radioheliograph operating at a frequency of 17 GHz for three sunspots have been analysed and are found to contain significant periods in the range of several tens of minutes. Wavelet analysis shows that these periods are persistent throughout the observation periods. The presence of the oscillations is confirmed by several methods (periodogram, wavelets, Fisher randomisation and empirical mode decomposition). Spatial analysis using the techniques of period, power, correlation and time lag mapping reveals regions of enhanced oscillatory power in the umbral regions. Also seen are two regions of coherent oscillation of about 25 pixels in size, that oscillate in anti-phase with each other. Possible interpretation of the observed periodicities is discussed, in terms of the shallow sunspot model and the leakage of the solar g-modes.
Long-term oscillations of microwave emission generated in sunspot magnetospheres are detected with the Nobeyama Radioheliograph (NoRH) at a frequency of 17 GHz, and the Siberian Solar Radio Telescope (SSRT) at 5.7 GHz. Significant periodicities in the range of 22-170 min are found in the variation of the emission intensity, polarisation and the degree of circular polarisation. Periods of the oscillations are not stable: they are different in different sunspots and in the same sunspot on different days. A cross-correlation analysis shows the presence of common significant periods in both NoRH and SSRT data. The cross-correlation coefficients are typically lower than 0.5, which can be attributed to the different heights of the emission formation, and different mechanisms for the emission generation (gyroresonance and thermal bremstrahlung at 17 GHz, and pure gyroresonance at 5.7 GHz). The observational results are consistent with the global sunspot oscillation model.
We studied a number of solar active regions using two-dimensional spatially resolved microwave observations. Data from the Nobeyama Radioheliograph and the Siberian Solar Radio Telescope together with observations by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) have allowed us to identify longlived intersunspot sources (ISSs) in most of the investigated active regions. Their centers are often located above the line-of-sight magnetic field inversion line that separates the leading and following polarities of a full active region (first type of ISS) or above the inversion line that separates magnetic polarities inside of a complex of sunspots (second type of ISS). ISSs of the first type are extended and, in general, they are sources of bremsstrahlung emission. ISSs of the second type are compact and are, most likely, sources of gyroresonance or gyrosynchrotron emission. We propose a qualitative model involving three types of magnetic connectivity to explain how long-lasting ISSs may be generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.