This work proposes algorithms for reconstruction of closed-loop pedestrian trajectories based on two foot-mounted inertial measurement units (IMU). The first proposed algorithm allows calculation of a trajectory using measurements from only one IMU. The second algorithm uses data 1 from both footmounted IMUs simultaneously. Both algorithms are based on the Kalman filter and the assumption that while a foot is on the ground its velocity is supposed to be zero. Two methods for comparing the obtained trajectories are proposed, advantages and disadvantages of each method are indicated and a way to optimize the computation time is presented. In addition, a method is proposed for constructing one generalized trajectory of human motion based on the trajectories of each leg.
This paper is devoted to construction of reference walking trajectories for developing pedestrian navigation algorithms for smartphones. Such trajectories can be used both for verification of classical algorithms of navigation or for application of machine learning technics. Reconstruction of closed trajectories based on data from foot-mounted inertial measurement units (IMU) is investigated. The advantages of the approach are the use of inexpensive sensors and the simplicity of the presented method. We propose algorithms for reconstruction of smooth 2D pedestrian trajectories based on measurements from a single IMU as well as on combined measurements from two IMU’s. Introduced algorithms are based on application of modified Kalman filter with an assumption of IMU having zero velocity when foot contacts the ground. In case of two measurement units, it is additionally assumed that the positions of the sensors cannot differ significantly from each other. The algorithms were tested on trajectories lasting from 1 to 10 minutes, passing indoors on horizontal surfaces. Obtained results were compared with high precision trajectories acquired with GNSS RTK receivers. Additionally, the process of inter-device time synchronization is investigated and detailed description of the experiments and used equipment is given. The dataset used for verification of proposed algorithms is freely available at: http://gartseev.ru/projects/rtj2021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.