A chromite occurrence called the Sabantuy paleoplacer was discovered in the Southern Pre-Ural region, at the east edge of the East-European Platform in the transitional zone to the Ural Foredeep. A ca. 1 m-thick chromite-bearing horizon is traced at a depth of 0.7–1.5 m from the earth’s surface for the area of ca. 15,000 m2. The chromspinel content in sandstones reaches 30–35%, maximum values of Cr2O3 are 16–17 wt.%. The grain size of detrital chromspinel ranges from 0.15 to 0.25 mm. Subangular octahedral crystals dominate; rounded grains and debris are rare. The composition of detrital chromspinel varies widely and is constrained by the substitution of Al3+ and Cr3+, Fe2+ and Mg2+ cations. Chemically, low-Al (Al2O3 = 12 wt.%) and high-Cr (Cr2O3 = 52–56 wt.%) chromspinel prevail. The compositional analysis using discrimination diagrams showed that most chromites correspond to mantle peridotites of subduction settings. Volcanic rocks could be an additional source for detrital chromites. It is confirmed by compositions of monomineralic, polymineralic and melt inclusions in chromspinels. The presented data indicates that ophiolite peridotites and related chromite ore associated with oceanic and island-arc volcanic rocks, widespread in the Ural orogen, could be the main sources of the detrital chromspinel of the Sabantuy paleoplacer.
Platinum Group Minerals are typically dated using the 187 Re-187 Os and 190 Pt-186 Os isotope systems and more recently using the 190 Pt-4 He geochronometer. The 187 Re-187 Os and 190 Pt-186 Os compositions of Pt-alloys from the Kondyor Zoned Ultramafic Complex (ZUC) analysed here reveal overprinting for both geochronometers except in one alloy exhibiting the most unradiogenic 187 Os/ 188 Os and most radiogenic 186 Os/ 188 Os signatures. These signatures argue for an Early Triassic mineralisation, when silicate melts/fluids derived from the partial melting of an Archean mantle crystallised to form the Kondyor ZUC while the 190 Pt-4 He chronometer supports an Early Cretaceous mineralisation. We propose that Kondyor ZUC represents the root of an alkaline picritic volcano that constitutes the remnants of an Early Triassic island arc formed during the subduction of the Mongol-Okhotsk ocean seafloor under the Siberia craton. After the Early Cretaceous collision of Siberia with the Mongolia-North China continent, the exhumation of deep-seated structures-such as the Kondyor ZUC-allowed these massifs to cool down below the closure temperatures of the Pt-He and K-Ar, Rb-Sr isotope systems, explaining their Early to Late Cretaceous ages for the Kondyor ZUC.
The results of the study of eskolaite associated with marble-hosted ruby found for the first time in the Kuchinskoe occurrence (Southern Urals) are presented. Here, eskolaite was located on the surface and near-surface regions of ruby crystals. Eskolaite diagnostics was confirmed by powder X-ray diffraction (URS-55). The morphology and chemical composition of eskolaite and associated ruby was studied using a JSM-6390LV scanning electron microscope and a Cameca SX 100 electron probe microanalyzer. The eskolaite crystals were hexagonal and tabular, up to 0.2 mm in size. Ruby mineralization was formed during prograde and retrograde dynamothermal metamorphism. The eskolaite associated with the prograde stage ruby contained Al2O3 (9.1–23.62 wt %), TiO2 (0.52–9.66 wt %), V2O3 (0.53–1.54 wt %), FeO (0.03–0.1 wt %), MgO (0.05–0.24 wt %), and SiO2 (0.1–0.21 wt %). The eskolaite associated with the retrograde stage ruby was distinguished by a sharp depletion in Ti and contained Al2O3 (12.25–21.2 wt %), TiO2 (0.01–0.07 wt %), V2O3 (0.32–1.62 wt %), FeO (0.01–0.08 wt %), MgO (0.0–0.48 wt %), and SiO2 (0.01–0.1 wt %). The associated rubies contained almost equal amounts of Cr2O3 (2.36–2.69 wt %) and were almost free from admixtures. The identification of the eskolaite associated with the marble-hosted rubies from the Kuchinskoe occurrence is a new argument in favor of introduction of Al and Cr into the mineral formation zone. The mineralization was localized in the metamorphic frame of the granite gneiss domes and was formed synchronously with them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.