Determination of a magnetic field structure on a neutron star (NS) surface is an important problem of a modern astrophysics. In a presence of strong magnetic fields a thermal conductivity of a degenerate matter is anisotropic. In this paper we present 3D anisotropic heat transfer simulations in outer layers of magnetized NSs, and construct synthetic thermal light curves. We have used a different from previous works tensorial thermal conductivity coefficient of electrons, derived from the analytical solution of the Boltzmann equation by the Chapman-Enskog method. We have obtained a NS surface temperature distribution in presence of dipole-plus-quadrupole magnetic fields. We consider a case, in which magnetic axes of a dipole and quadrupole components of the magnetic field are not aligned. To examine observational manifestations of such fields we have generated thermal light curves for the obtained temperature distributions using a composite black-body model. It is shown, that the simplest (only zero-order spherical function in quadrupole component) non-coaxial dipole-plus-quadrupole magnetic field distribution can significantly affect the thermal light curves, making pulse profiles non-symmetric and amplifying pulsations in comparison to the pure-dipolar field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.