[1] We present a model study of carbon monoxide for 1988-1997 using the GEOS-Chem 3-D model driven by assimilated meteorological data, with time-varying emissions from biomass burning and from fossil fuel and industry, overhead ozone columns, and methane. The hydroxyl radical is calculated interactively using a chemical parameterization to capture chemical feedbacks. We document the inventory for fossil fuels/industry and discuss major uncertainties and the causes of differences with other inventories that give significantly lower emissions. We find that emissions hardly change from 1988 to 1997, as increases in Asia are offset by decreases elsewhere. The model reproduces the 20% decrease in CO at high northern latitudes and the 10% decrease in the North Pacific, caused primarily by the decrease in European emissions. The model compares well with observations at sites impacted by fossil fuel emissions from North America, Europe, and east Asia suggesting that the emissions from this source are reliable to 25%, and we argue that bottom-up emission estimates are likely to be too low rather than too high. The model is too low at the seasonal maximum in spring in the southern tropics, except for locations in the Atlantic Ocean. This problem may be caused by an overestimate of the frequency of tropical deep convection, a common problem in models that use assimilated meteorological data. We argue that the yield of CO from methane oxidation is near unity, contrary to some other studies, based on removal rates of intermediate species.
Abstract. We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004-April 2005 global inversion of CO sources at 4 • ×5 • spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM) and its adjoint applied to MO-PITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD), and aircraft (MOZAIC) are used for evaluation of the a posteriori solution. Using GEOSChem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a −1 . This is much higher than current bottomup emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-thanexpected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posCorrespondence to: M. Kopacz (mkopacz@princeton.edu) teriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets.
International audienceWe use ozone observations from sondes, regular aircraft, and alpine surface sites in a self-consistent analysis to determine robust changes in the time evolution of ozone over Europe. The data are most coherent since 1998, with similar interannual variability and trends. Ozone has decreased slowly since 1998, with an annual mean trend of −0.15 ppb yr−1 at ∼3 km and the largest decrease in summer. There are some substantial differences between the sondes and other data, particularly in the early 1990s. The alpine and aircraft data show that ozone increased from late 1994 until 1998, but the sonde data do not. Time series of differences in ozone between pairs of locations reveal inconsistencies in various data sets. Differences as small as few ppb for 2-3 years lead to different trends for 1995-2008, when all data sets overlap. Sonde data from Hohenpeissenberg and in situ data from nearby Zugspitze show ozone increased by ∼1 ppb yr−1 during 1978-1989. We construct a mean alpine time series using data for Jungfraujoch, Zugspitze, and Sonnblick. Using Zugspitze data for 1978-1989, and the mean time series since 1990, we find that the ozone increased by 6.5-10 ppb in 1978-1989 and 2.5-4.5 ppb in the 1990s and decreased by 4 ppb in the 2000s in summer with no significant changes in other seasons. It is hard to reconcile all these changes with trends in emissions of ozone precursors, and in ozone in the lowermost stratosphere. We recommend data sets that are suitable for evaluation of model hindcasts
Methane has exhibited significant interannual variability with a slowdown in its growth rate beginning in the 1980s. We use a 3‐D chemical transport model accounting for interannually varying emissions, transport, and sinks to analyze trends in CH4 from 1988 to 1997. Variations in CH4 sources were based on meteorological and country‐level socioeconomic data. An inverse method was used to optimize the strengths of sources and sinks for a base year, 1994. We present a best‐guess budget along with sensitivity tests. The analysis suggests that the sum of emissions from animals, fossil fuels, landfills, and wastewater estimated using Intergovernmental Panel on Climate Change default methodology is too high. Recent bottom‐up estimates of the source from rice paddies appear to be too low. Previous top‐down estimates of emissions from wetlands may be a factor of 2 higher than bottom‐up estimates because of possible overestimates of OH. The model captures the general decrease in the CH4 growth rate observed from 1988 to 1997 and the anomalously low growth rates during 1992–1993. The slowdown in the growth rate is attributed to a combination of slower growth of sources and increases in OH. The economic downturn in the former Soviet Union and Eastern Europe made a significant contribution to the decrease in the growth rate of emissions. The 1992–1993 anomaly can be explained by fluctuations in wetland emissions and OH after the eruption of Mount Pinatubo. The results suggest that the recent slowdown of CH4 may be temporary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.