Abstract:The conductivity of bundles of carbon single-walled nanotubes with metallic conductivity (metallic nanotubes) is investigated over the wide temperature range 4.2-330 K and electrical fields up to 50 V. The usage of short electrical pulses of the duration of 10 ns allowed to avoid an influence of a self-heating of the investigated structures on current-voltage characteristics. It is shown that the temperature dependence of conductivity is described by the power function G T a . At helium temperatures the asymptotic dependence of current on applied voltage is close to J V 1+ with = 0.45. From a comparison of the obtained results of measurements with calculations, it is shown that the conductivity of nanotube bundles is well described within the theory of the Luttinger-liquid conductivity for one-dimensional conductors. The self-heating of the carbon nanotube bundles was observed in the case of measurements in the regime of dc current. A method for determination of the self-heating temperature of nanotube bundles as a function of an applied electrical field is proposed. The power dependence of the self-heating temperature on voltage T V p with the exponent p = 2.1 was observed above some threshold voltage in the temperature range 4.2-200 K. Above 200 K the exponent decreased down to p = 1.35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.