In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature.Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate.Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in Schultz et al: Tropospheric Ozone Assessment Report Art. 58, page 2 of 26 terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.
Extracting globally representative trend information from lower tropospheric ozone observations is extremely difficult due to the highly variable distribution and interannual variability of ozone, and the ongoing shift of ozone precursor emissions from high latitudes to low latitudes. Here we report surface ozone trends at 27 globally distributed remote locations (20 in the Northern Hemisphere, 7 in the Southern Hemisphere), focusing on continuous time series that extend from the present back to at least 1995. While these sites are only representative of less than 25% of the global surface area, this analysis provides a range of regional long-term ozone trends for the evaluation of global chemistry-climate models. Trends are based on monthly mean ozone anomalies, and all sites have at least 20 years of data, which improves the likelihood that a robust trend value is due to changes in ozone precursor emissions and/or forced climate change rather than naturally occurring climate variability. Since 1995, the Northern Hemisphere sites are nearly evenly split between positive and negative ozone trends, while 5 of 7 Southern Hemisphere sites have positive trends. Positive trends are in the range of 0.5-2 ppbv decade-1 , with ozone increasing at Mauna Loa by roughly 50% since the late 1950s. Two high elevation Alpine sites, discussed by previous assessments, exhibit decreasing ozone trends in contrast to the positive trend observed by IAGOS commercial aircraft in the European lower free-troposphere. The Alpine sites frequently sample polluted European boundary layer air, especially in summer, and can only be representative of lower free tropospheric ozone if the data are carefully filtered to avoid boundary layer air. The highly variable ozone trends at these 27 surface sites are not necessarily indicative of free tropospheric trends, which have been overwhelmingly positive since the mid-1990s, as shown by recent studies of ozonesonde and aircraft observations.
Abstract. Long-term ozone measurements of two background mountain sites, namely the Kislovodsk High Mountain Station in Caucasus, Russia (KHMS, 43.70 • N, 42.70 • E, 2070 m a.s.l.) and the Jungfraujoch in Switzerland (JFJ, 46.55 • N, 7.98 • E, 3580 m a.s.l.) are compared. Despite of more than 1.5 km altitude difference ozone mixing ratios are comparable at JFJ an KHMS in the beginning of measurements (1990)(1991)(1992)(1993) while the annually averaged levels at JFJ are around 15 ppb higher than the ones at KHMS for the most recent years (1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006). The seasonal cycle of the surface ozone mixing ratios is characterized by a double spring-summer maximum at both sites with a spring one being more pronounced for the air masses with the longest contact with the upper free troposphere and stratosphere. Ozone mixing ratio increased at JFJ but decreased at KHMS for the period [1990][1991][1992][1993][1994][1995][1996][1997][1998][1999][2000][2001][2002][2003][2004][2005][2006] detected which could lead to strong changes in the trend magnitude between 1991-2001 and 1997-2006. The geographical position of the sites relative to the main topographic features and emission sources as well as distance from the coast are interpreted to be among the main reasons for the opposite surface ozone trends. During the 90s the JFJ trend reflects increase of the ozone in the upper free troposphere/lower stratosphere, while KHMS is not sensitive to this change or even showing the opposite tendency. The analysis provided evidence for a stronger influence of processes in the lower troposphere, in particular the dramatic emission decrease in the earlier 1990s in former USSR and emissions regulations in Western Europe on the surface ozone trend at KHMS.
Information on the ozone concentration in the surface air and troposphere in the first half of 2020 is presented. The data were acquired at 13 stations in different Russian regions; vertical distributions were obtained with the use of an aircraft laboratory. The excess over the Russian Federation hygienic standards is assessed; the daily average ozone concentration is found to be regularly higher the maximum permissible concentrations at most stations. At some stations, there are features the seasonal variations in the ozone concentration in the period under study different from previous years.
We present information on ozone concentration in the surface air layer in the second half of 2020. Data were obtained at 13 stations located in different regions of Russia. We estimated the excess over hygienic standards of the Russian Federation, both in the second half of the year and throughout 2020. It is shown that the daily average maximum permissible concentration of ozone is regularly exceeded at all stations. There are cases of exceeding the one-time maximum permissible concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.