Efficient protocols for the synthesis of triphenylcyclopentadienyl
rhodium halides [(1,2,4-C5Ph3H2)RhX2]2 (1a,b: X = Cl, I)
starting from 1,2,4-triphenylcyclopentadiene or the cyclooctadiene
derivative (1,2,4-C5Ph3H2)Rh(cod)
(2) were developed. Iodide abstraction from 1b with thallium or silver salts allowed us to prepare rhodocenium
[(1,2,4-C5Ph3H2)RhCp]PF6 (3PF6) and mesitylene complex [(1,2,4-C5Ph3H2)Rh(mesitylene)](SbF6)2 (4(SbF6)2). Halides 1a,b (at 0.5 mol % loading) showed high catalytic
activity in the construction of C–C, C–O, and C–N
bonds via the C(sp2)–H activation approach. Their
efficiency was demonstrated in the synthesis of more than 40 examples
of polycyclic organic compounds (such as isocoumarins and naphthalenes,
as well as isoquinolinium and dibenzo[a,f]quinolizinium salts). The protocols developed tolerate a wide range
of functional groups. In particular, they were successfully used for
the atom- and step-economical synthesis of hydroxy-substituted isocoumarins,
including the natural product oospalactone 7fe. The 6-
or 8-hydroxy-substituted isocoumarins showed moderate antiproliferative
activity against several human cell lines in vitro.
A series of bifunctional Ru(III) complexes with lonidamine-modified ligands (lonidamine is a selective inhibitor of aerobic glycolysis in cancer cells) was described. Redox properties of Ru(III) complexes were characterized by cyclic voltammetry. An easy reduction suggested a perspective for these agents as their whole mechanism of action seems to be based on activation by metal atom reduction. New compounds demonstrated a more pronounced antiproliferative potency than the parental drug; individual new agents were more cytotoxic than cisplatin. Stability studies showed an increase in the stability of complexes along with the linker length. A similar trend was noted for antiproliferative activity, cellular uptake, apoptosis induction, and thioredoxin reductase inhibition. Finally, at concentrations that did not alter water solubility, the selected new complex evoked no acute toxicity in Balb/c mice.
Protein quantitation in tissue cells or physiological fluids based on liquid chromatography/mass spectrometry is one of the key sources of information on the mechanisms of cell functioning during chemotherapeutic treatment. Information on significant changes in protein expression upon treatment can be obtained by chemical proteomics and requires analysis of the cellular proteomes, as well as development of experimental and bioinformatic methods for identification of the drug targets. Low throughput of whole proteome analysis based on liquid chromatography and tandem mass spectrometry is one of the main factors limiting the scale of these studies. The method of direct mass spectrometric identification of proteins, DirectMS1, is one of the approaches developed in recent years allowing ultrafast proteome-wide analyses employing minute-scale gradients for separation of proteolytic mixtures. Aim of this work was evaluation of both possibilities and limitations of the method for identification of drug targets at the level of whole proteome and for revealing cellular processes activated by the treatment. Particularly, the available literature data on chemical proteomics obtained earlier for a large set of onco-pharmaceuticals using multiplex quantitative proteome profiling were analyzed. The results obtained were further compared with the proteome-wide data acquired by the DirectMS1 method using ultrashort separation gradients to evaluate efficiency of the method in identifying known drug targets. Using ovarian cancer cell line A2780 as an example, a whole-proteome comparison of two cell lysis techniques was performed, including the freeze-thaw lysis commonly employed in chemical proteomics and the one based on ultrasonication for cell disruption, which is the widely accepted as a standard in proteomic studies. Also, the proteome-wide profiling was performed using ultrafast DirectMS1 method for A2780 cell line treated with lonidamine, followed by gene ontology analyses to evaluate capabilities of the method in revealing regulation of proteins in the cellular processes associated with drug treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.