The water-dimethyl sulfoxide (DMSO) system was studied by means of static light scattering in the concentration range of 0 to 60 mol % DMSO at 20 and 50°C. In the concentration range of 10 mol % DMSO, an abnormal maximum of scattered light was detected, the intensity of which decreases with an increase of temperature. The formation of this maximum is related to hydrophobic effects in the system under study and the existence of an unattainable critical point of delayering. Temperature inversion of light scatter ing intensity was detected at ~14 mol % DMSO; at higher concentrations of DMSO, the intensity at 50°C is notably higher than at 20°C (due to the increase in the concentration's degree of fluctuation upon an increase in temperature); at 60 mol % DMSO, intensities of scattered light at 20 and 50°C almost coincide. The apparent molar volumes of DMSO in solutions were calculated from the published data on density in the tem perature range of 5 to 50°C. The minima of these values from 10 to 15 mol % DMSO (i.e., in the range of the abnormal maximum of scattered light) were obtained. The manifestation of hydrophobic effects in aqueous solutions of amphiphilic molecules is explained using the example of the DMSO-H 2 O system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.