Alloys of the quasibinary TiNi-TiCu system manufactured by melt quenching in the form of thin 20–50 μm ribbons have proven to show good potential as materials for the fabrication of micromechanical devices. At high cooling rates (about 106 K/s), this method allows producing high-copper (more than 20 at.%) amorphous alloys which exhibit an excellent shape-memory effect after crystallization. Their properties are known to largely depend on the crystallization conditions and the structure of the initial amorphous material acting as a precursor for the formation of crystal phases. It has been shown recently that the rejuvenation procedure (cryogenic thermocycling) of metallic glasses is one of the most promising methods of improving their properties. In this study, we investigated for the first time the effect of cryogenic thermocycling of rapidly quenched amorphous TiNiCu on the initial state, as well as on structure formation and the phase transformation patternsof subsequent crystallization conducted using various methods. The effect was analyzed utilizing the methods of scanning and transmission electron microscopy, X-ray diffraction analysis, and differential scanning calorimetry. The results show that rejuvenation treatment slightly reduces the glass transition and crystallization onset temperatures and moderately changes the sizes of structural features (grains, martensite plates), the quantity of the martensite phase, and the characteristic temperatures and enthalpy of the martensitic transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.