We report that N(2),N(6)-bis(4-nitrophenyl)pyridine-2,6-dicarboxamide, which is related to known isophthalic acid dianilides, transports Cl(-) ions through phospholipid bilayer membranes and shows clear evidence of channel activity.
The compelling chemical goal of modeling protein channel behavior has led to synthetic compounds that are true ion channels. Although they largely lack the selectivity and sophistication of highly evolved proteins, they successfully perform a variety of biological functions. This tutorial review describes these novel structures and their activity in living systems. Different channel structures show antibacterial to anticancer activity when tested against a variety of cell types.
The F(-), Cl(-), and Br(-) binding selectivity of bis(p-nitroanilide)s of dipicolinic and isophthalic acids was studied by using competitive electrospray mass spectrometry and UV-Visible spectroscopy. Both hosts prefer binding Cl(-) over either F(-) or Br(-). Host deprotonation was observed to some extent in all experiments in which the host was exposed to halide ions. When F(-) was present, host deprotonation was often the major process, whereas little deprotonation was observed by Cl(-) or Br(-), which preferred complexation. A solution of either host changed color when mixed with a F(-), H(2)PO(4)(-), di- or triphenylacetate solution.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.