BackgroundMerino and Merino-derived sheep breeds have been widely distributed across the world, both as purebred and admixed populations. They represent an economically and historically important genetic resource which over time has been used as the basis for the development of new breeds. In order to examine the genetic influence of Merino in the context of a global collection of domestic sheep breeds, we analyzed genotype data that were obtained with the OvineSNP50 BeadChip (Illumina) for 671 individuals from 37 populations, including a subset of breeds from the Sheep HapMap dataset.ResultsBased on a multi-dimensional scaling analysis, we highlighted four main clusters in this dataset, which corresponded to wild sheep, mouflon, primitive North European breeds and modern sheep (including Merino), respectively. The neighbor-network analysis further differentiated North-European and Mediterranean domestic breeds, with subclusters of Merino and Merino-derived breeds, other Spanish breeds and other Italian breeds. Model-based clustering, migration analysis and haplotype sharing indicated that genetic exchange occurred between archaic populations and also that a more recent Merino-mediated gene flow to several Merino-derived populations around the world took place. The close relationship between Spanish Merino and other Spanish breeds was consistent with an Iberian origin for the Merino breed, with possible earlier contributions from other Mediterranean stocks. The Merino populations from Australia, New Zealand and China were clearly separated from their European ancestors. We observed a genetic substructuring in the Spanish Merino population, which reflects recent herd management practices.ConclusionsOur data suggest that intensive gene flow, founder effects and geographic isolation are the main factors that determined the genetic makeup of current Merino and Merino-derived breeds. To explain how the current Merino and Merino-derived breeds were obtained, we propose a scenario that includes several consecutive migrations of sheep populations that may serve as working hypotheses for subsequent studies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12711-015-0139-z) contains supplementary material, which is available to authorized users.
This report is a review of some of the results obtained over the course of 20 years spent investigating hemoglobin phenotypes and the related functional effects on hematological patterns in ruminant breeds. Tests included qualitative and quantitative analyses of hemoglobins and qualitative and quantitative analyses of α and β globins, as well as hemochromocytometric analysis. Understanding the adaptive significance of the hemoglobin variants was the goal of most of these investigations. The advances presented in this review and the previously unpublished findings included here provide evidence that Mediterranean breeds exhibit a fair number of positively charged variants, whose possible adaptive significance is discussed.
BackgroundA study was carried out to evaluate the response of different native sheep breeds to experimental infection with Anaplasma ovis, the most prevalent sheep tick-borne pathogen in Apulia (Southern Italy). Thirty-four lambs belonging to a Northern European breed (Suffolk) and two Southern Italian breeds (Comisana and Altamurana) were infected. Eleven clinical as well as haematological parameters were monitored at different temporal resolutions on the same subjects before and after the infection, resulting in a data set of 435 observations. The present work, aiming to further the research, presents the results of a multivariate analysis carried out to identify which parameters out of the eleven considered are the most reliable parameters to be considered as markers of the disease phenotype as well as prognosticators of practical clinical importance.ResultsData were analysed by discriminant analysis. Out of the eleven considered variables (red blood cells, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin content, haemoglobin concentration, white blood cells, neutrophils, leukocytes, platelets, rectal temperature), only seven were included in the step-wise model since significantly increasing the Mahlanobis distance between the two closest groups. Both discriminant functions resulted to be highly significant (P < 0.0001) and the percentage of variation accounted for by the first discriminant function was 63.6% of the variance in the grouping variable.ConclusionsTaken together, the observed results stress the marked differentiation among the three breeds in terms of physio-pathological phenotypes indicating packed cell volume and red blood cell count as the most informative parameters in the routine clinical practice for A. ovis infection in sheep.
Anemia causes a change in the type of circulating hemoglobin (Hb) in sheep carrying the βA-globin haplotype, where the Hb A is replaced with Hb C, unlike Hb B. The effect of the substitution of Hb A with Hb C on the recovery from anemia was investigated by comparing the hematological picture of sheep, following experimental infection with Anaplasma ovis. The blood values were obtained from 3 AB and 3 BB Hb sheep after the development of the disease where anemia is a pathognomonic symptom. The expression of the silent gene encoding for Hb C was detected by isoelectric focusing and quantified by high performance liquid chromatography. Both Hb AB genotype and Hb C occurrence were involved in the lower recovery from anemia in the trial
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.