Barrier model of a non-crystalline semiconductor is described in this article. The most important optical phenomena, which are typical for this group of materials, are explained on the base of this model. The model assumes that in non-crystalline semiconductors the potential barriers exist, which separate certain microscopic areas from each other, assuming barriers possess a parabolic profile. This conception explains the rise of exponential tails of optical absorption at the end of optical edge as well as electroabsorption, photoelectric conductivity, photoluminescence, and others. Using this model, many electric transport properties of non-crystalline semiconductors can be explained successfully.
Barrier-cluster-heating model of disordered semiconductors was originated by synthesis of the barriercluster model (which was described in the previous works of authors) and of the local heating model (published short time ago). The synthesis of these two models brought synergic effect enabling deeper understanding of physical processes in amorphous semiconductors. The article gives a new view on the essence of some optical and photoinduced effects in chalcogenide glasses on the base of the barrier-cluster-heating model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.