The molecular basis of hereditary complement factor I deficiency is described in two pedigrees. In one pedigree, there were two factor I-deficient siblings, one of whom was asymptomatic and the other suffered from recurrent pyogenic infections. Their factor I mRNA was analyzed by reverse transcription of fibroblast RNA followed by amplification using the polymerase chain reaction. Both siblings were homozygous for the same transversion (adenine to thymine) at nucleotide 1282 in the cDNA. This mutation causes histidine-400 to be replaced by leucine. The altered histidine is a semi-conserved residue within the serine proteinase family, although no function has been ascribed to it. The proband of the second pedigree studied was found to be a compound heterozygote. One allele had the same mutation as the first family, the second allele had a donor splice site mutation that resulted in the deletion of the mRNA encoded in the fifth exon (a low-density lipoprotein receptor domain) from its transcript. ( J. Clin. Invest. 1996. 97:925-933.)
The potential suppressive effects of allospecific anergic T cells were investigated both in vitro and in vivo. Allospecific T cells were rendered unresponsive in vitro using immobilized anti-CD3 mAb. These anergic T cells profoundly inhibited proliferation of responsive T cells in an antigen-specific manner. The observed inhibition did not appear to be due to the release of inhibitory cytokines in that secretion of IL-2, IFN-gamma, IL-4, IL-10 and TGF-beta was greatly reduced following the induction of anergy, and neutralizing mAb specific for IL-4, IL-10 and TGF-beta failed to reverse the inhibition. Furthermore, the suppression mediated by anergic T cells required cell to cell contact. In vivo, adoptive transfer of anergic T cells into recipients of allogeneic skin grafts led to prolonged skin graft survival. Consistent with the lack of inhibitory cytokine production by the anergic cells, prolongation of skin allograft rejection was not influenced by the simultaneous administration of a neutralizing anti-IL-4 antibody. These results indicate that anergic T cells can function as antigen-specific suppressor cells both in vitro and in vivo.
This study provides the first evidence that Foxp3-transduced T cells can control the rejection of an allogeneic transplant and suggests that T-cell Foxp3 gene transfer may have therapeutic value in clinical transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.