Purpose
Friction stir processing (FSP) is overviewed with the process variables, along with the thermal aspect of different metals.
Design/methodology/approach
With its inbuilt advantages, FSP is used to reduce the failure in the structural integrity of the body panels of automobiles, airplanes and lashing rails. FSP has excellent process ability and surface treatability with good corrosion resistance and high strength at elevated temperatures. Process parameters such as rotation speed of the tool, traverse speed, tool tilt angle, groove design, volume fraction and increase in number of tool passes should be considered for generating a processed and defect-free surface of the workpiece.
Findings
FSP process is used for modifying the surface by reinforcement of composites to improve the mechanical properties and results in the ultrafine grain refinement of microstructure. FSP uses the frictional heat and mechanical deformation for achieving the maximum performance using the low-cost tool; the production time is also very less.
Originality/value
100
Ultrasonic Vibration assisted Friction Stir Processing is one of the advanced surface modification techniques developed for ductile materials like aluminium to improve their surface properties. The present study is aimed to improve mechanical properties of the AA7075-T651 surface composite by reinforcing the nano B4C particles with optimum working condition. Experiments are conducted at different levels of tool rotation speed, tool processing speed and volume percentage of nano B4C particles with and without ultrasonic vibrations and the experimental results for ultimate tensile strength, impact strength, yield strength, percentage of elongation and hardness are measured. Jaya Algorithm (JA) is used and found best optimum condition such as 1112 r/min of tool rotational speed, 43.96 mm/min of tool traverse speed and 4.02 vol % of B4C nano particles. Mechanical properties and microstructure are investigated using optical Microscope, Field emission scanning electron microscope and Transmission electron microscopy analysis. A fine grain structure and uniform distribution of reinforcement are found in the matrix with the ultrasonic vibrations and the mechanical properties of the AA7075 alloy are improved. The microstructure of the surface composite is correlated with the mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.