The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin² sampled at 0.2x0.2 arcsec² and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report the performance achieved with the first integral field unit.
The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the ESO Very Large Telescope. After completion of the Final Design Review in 2009, MUSE is now in its manufacture and assembly phase. To achieve a relative large field-of-view with fine spatial sampling, MUSE features 24 identical spectrograph-detector units. The acceptance tests of the detector sub-systems, the design and manufacture of the calibration unit and the development of the Data Reduction Software for MUSE are under the responsibility of the AIP. The optical design of the spectrograph implies strict tolerances on the alignment of the detector systems to minimize aberrations. As part of the acceptance testing, all 24 detector systems, developed by ESO, are mounted to a MUSE reference spectrograph, which is illuminated by a set of precision pinholes. Thus the best focus is determined and the image quality of the spectrograph-detector subsystem across wavelength and field angle is measured.
For many applications, the usefulness of millimeter-wave imagers is limited by the large aperture sizes required to obtain images of sufficient resolution. Sparse aperture techniques could open up wider range of applications by mitigating the volume requirements of high resolution imagers. In previous proceedings, we have presented an approach towards the realization of millimeter-wave, sparse-aperture imagers using optical techniques. By using electro-optic modulators to upconvert received millimeter-wave fields onto an optical carrier, such fields can be readily captured, routed, and processed using optical techniques. Such techniques could provide significant advantages over traditional heterodyne techniques. Herein, we present progress towards the physical realization of such an imager. Specifically, we discuss the implementation challenges that must be addressed to create such an imager and present in further detail the numerous advantages such an approach will yield. We also present results obtained from a working prototype system and show that these results are in good agreement with theoretical performance models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.