Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by two parameters only, the membrane tension sigma and the bending elasticity k(c). For liposomes containing dimyristoyl phosphatidylcholine (DMPC) or a 10 mol% cholesterol/DMPC mixture, the mechanical property of the membrane, k(c), is shown to be temperature dependent on approaching the main (thermotropic) phase transition temperature T(m). In the case of DMPC/cholesterol bilayers, we also obtained evidence for a relation between the bending elasticity and the corresponding temperature/cholesterol molecular ratio phase diagram. Comparison of DMPC/cholesterol with DMPC/cholesterol sulfate bilayers at 30 degrees C containing 30% sterol ratio shows that k(c) is independent of the surface charge density of the bilayer. Finally, bending elasticities of red blood cell (RBC) total lipid extracts lead to a very low k(c) at 37 degrees C if we refer to DMPC/cholesterol bilayers. At 25 degrees C, the very low bending elasticity of a cholesterol-free RBC lipid extract seems to be related to a phase coexistence, as it can be observed by solid-state (31)P-NMR. At the same temperature, the cholesterol-containing RBC lipid extract membrane shows an increase in the bending constant comparable to the one observed for a high cholesterol ratio in DMPC membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.