It is a known fact that the progress and development of different nations of the world is strongly connected with the type of materials under their use. This paper highlighted the development of nanotechnology in some selected countries of the world through a careful review of their road maps by way of public and private initiatives, funding/investment profile, human resources development, industrial potentials, and focus in order to draw inferences. The peculiar challenges and opportunities for some African nations and other least developed countries (LDC) were drawn for their economic and technological developments. This investigation was simply based on open access literatures. The review showed that although nanotechnology is new globally, most countries of the world have had growing public and private investments aimed at bringing about new materials and systems that can impact positively on their economy and ensure their global competitiveness and sustainability. The global scenario suggests the crucial role of cooperation in a multidisciplinary collaboration/partnership between government ministries, agencies, institutions, and private sector/donor agencies in order to pool enough resource capital required for activities in nanotechnology.
A mixture of NaOH and Na 2 SO 3 was used in modification of banana stem fibers (BSF). Unidirectional BSF reinforced natural rubber (NR) lamina composites were made using compression moulding method. The results of the tensile loading in 0˚, 45˚ and 90˚ to the fiber directions of the composite with fiber mass fraction of 30% were studied. Surface modification of the BSF with a mixture of 4% NaOH and 2% Na 2 SO 3 increased the tensile strength and elastic modulus of the composite to 4.03 MPa and 147.34 MPa respectively from 3.12 MPa and 84.30 MPa of the untreated. Variation in properties due to fiber orintations was observed indicating a higher value of properties in the 0 o fiber orientation than in 45˚ and 90˚ directions. The result of scanning electron microscope (SEM) micrographs of the surfaces of the fibers indicted an improvement in bonding of the fiber bundles prior to lamination with natural rubber as a result of surface treatment which resulted in its higher tensile strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.