Phosphorus (P) is the most important nutrient element (after nitrogen) limiting agricultural production in most regions of the world. It is extremely chemically reactive, and more than 170 phosphate minerals have been identified. In all its natural forms, including organic forms, P is very stable or insoluble, and only a very small proportion exists in the soil solution at any one time. Plant-available P may be considered in either its quantitative or intensive dimension. The quantity of available P is time-specific and crop-specific, because it is the amount of P that will come into the soil solution and be taken up by the crop during its life cycle. The intensity of available P (availability) is most easily identified with its concentration in the soil solution. The soil property controlling the relationship between the solid phase P and its concentration in solution is known as the buffering capacity. The solid phase P involved in this relationship is only a small proportion of the total P, and is known as labile P. It is usually measured by isotopic exchange, but this exchangeable P component does not include the sparingly soluble compounds that also replenish the soil solution as its concentration is depleted by plant uptake. The buffering capacity is the ability of the soil solution to resist a change in its P concentration as P is removed by plant uptake or added in fertilisers or organic materials. Buffering capacity is synonymous with sorptivity, which is a preferable term in the context of the reactivity of P fertiliser with soil. It is usually measured from an adsorption isotherm. By fitting a suitable equation, such as the Langmuir, the total sorption capacity as well as the sorption strength can be determined. Both parameters are important in understanding P availability in soils. Buffering capacity has a major effect on the uptake of labile P because it is inversely related to the ease of desorption of solid phase P and its diffusion. Available P therefore is a direct function of the quantity of labile P and an inverse function of buffering capacity. This has been demonstrated in plant uptake studies. Similarly, the most effective methods of measuring available P (soil tests) are those which remove a proportion of labile P that is inversely related to buffer capacity. Soil tests which measure the concentration of P in solution actually measure availability rather than available P, and their efficacy on a range of soils will depend on the uniformity of the soils" buffer capacities. The most effective soil test usually consists of an anionic extractant. Acidic lactate or fluoride have been found most effective in New South Wales, on a wide range of soils, except calcareous soils which neutralise the acidic component (usually hydrochloric or acetic acid) of the extractant. Sodium bicarbonate (pH 8 · 5) has been found effective on calcareous soils and is widely used throughout the world. It has proved unreliable on NSW soils, and may need more thorough evaluation on non-calcareous soils in other parts of Australia.
For forty-one soils (pH > 5.0) from southern England and eastern Australia, the Langmuir equation was an excellent model for describing P adsorption from solutions < I O -~ M P, if it was assumed that adsorption occurs on two types of surface of contrasting bonding energies. For most of these soils, which were relatively undersaturated with P, this equation may be written as : k'xhc k x k c x = -I +k'c+x$-K"c' where x = adsorption, k = adsorption/desorption equilibrium constant, x, = monolayer adsorption capacity, and c = equilibrium solution concentration. The relative magnitude of the parameters for each surface were approximately: x& = 0.3 x h and k' = IOO k". More than 90 per cent of the native adsorbed P occurs on the high-energy surface in most soils.
Two groups of soils were examined to determine the effects of dairy, pig, or sewage effluent and other materials containing phosphorus (P) on their P sorption characteristics, using the Langmuir equation to estimate values of both sorption capacity and sorption strength. There were 19 soils (0-15 cm) from 6 sites in the Williams River catchment and 3 soils (0-100 cm) from Bermagui, all from coastal New South Wales. Effluent usually decreased P sorption capacities of the Williams River soils, and in 3 soils the capacities were reduced to zero. Sorption strength was reduced substantially by effluent treatment in all soils except one, which had received effluent for only 3 years. Sorption strength, but not necessarily capacity, was also lower after treatment with poultry manure or chicken litter than after treatment with superphosphate only. Where effluent did not decrease sorption capacity there was a substantial increase in total carbon and iron, both of which could increase sorption capacities. After 3 years of effluent treatment of the Bermagui soil, sorption capacities had been reduced in the top 70 cm depth, the extent of the reduction varying from 17% at 0-7 · 5 cm depth to 38% at 40-70 cm depth. Sorption strength was reduced in the top 40 cm depth only. After 12 years of effluent treatment, sorption capacities and strength had also decreased at the deeper sampling depths (to 100 cm), and the average reduction in capacity was about 40%. These results suggest that P leaching will begin well before the total sorption capacity has been saturated. There was a direct and significant correlation between the sorption strength of the untreated soil and the percentage saturation reached before leaching began. Further saturation of the sorption complex appears to be slow after this degree of saturation has been reached, and it seems that P leaching exceeds adsorption during this phase. There was also a negative correlation between sorption strength and KCl-soluble P in all soils, suggesting that soil P solubility and potential saturation are both controlled by this characteristic.
Four soil P tests — Olsen, Colwell, Bray, and Mehlich — were evaluated in a greenhouse experiment in relation to plant uptake, relative yield, labile P, and buffer capacity on 30 soils varying in pH from 5.4 to 8.1. The Olsen and Colwell tests were most highly correlated with plant uptake, and the Olsen and Bray tests with relative yield. When the soils were stratified into weakly, moderately, and strongly buffered groups, it was found that extraction of labile P was depressed by increasing buffer capacity most in the Bray test, followed by the Olsen test, and least in the Colwell test. The Bray test tended to overcompensate for the effects of buffering on plant uptake and therefore underestimated the amount of available P in strongly buffered soils, whereas the Colwell method tended to overestimate it in strongly buffered soils. The Olsen test appeared to be correctly sensitive to buffering and therefore gave the highest correlations with both plant parameters. The Mehlich test extracted large amounts of nonlabile P in soils with pH >6.0 and was therefore weakly correlated with plant uptake and relative yield. The results showed that in a successful soil test, increasing buffer capacity will depress the extraction of labile P in the same way as it depresses uptake by plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.