This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.
The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (∼100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 μm were used to seed the instability. Radiographs with 15 μm resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 μm wavelengths.
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during DD fusion and can undergo secondary DT reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall DT to DD neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions are also shown to provide an upper bound for volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., to appear in PRL] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PACS numbers:Introduction.-Magneto-inertial fusion (MIF) offers some key advantages over traditional inertial confinement fusion (ICF). In MIF, fuel magnetization relaxes the extreme pressure requirements characteristic of traditional ICF and enhances thermal insulation of the hot fuel from the colder pusher [1-10]. We consider paradigmatically the radial compression of a long, thin cylinder of fuel magnetized with a uniform, axial field prior to compression [11][12][13][14][15][16][17]. At stagnation, the compressed magnetic flux redirects charged burn products axially, increasing the effective fuel areal density from ρR to ρZ, where ρ is the fuel mass density, R is the fuel radius, Z is the fuel length, and A ≡ Z/R ≫ 1 is the aspect ratio.Sandia National Laboratories has fielded the first integrated experiments investigating Magnetized Liner I nertial F usion (MagLIF) [14][15][16][17], which involves direct compression of magnetized, preheated deuterium fuel by a solid metal (beryllium) liner, imploded on the 26 MA, 100 ns Z Pulsed Power Facility [18]. The imploding cylindrical liner compresses a pre-seeded axial magnetic field, B 0 (≈ 10 T in the first experiments), to high amplitude at stagnation, B, where perfect flux conservation would imply B = B 0 (R 0 /R) 2 , and R 0 = 2.325 mm is the initial fuel radius. However, detailed simulations suggest that multiple effects (e.g., resistive losses, Nerst effect) can lead to leakage of magnetic flux out of the hot fuel [14,17]. Thus, diagnosing the efficacy of flux compression in experiments is critical for understanding target performance and the viability of the concept.
The Beamlet is a single-beam prototype of future multibeam megajoule-class Nd:glass laser drivers for inertial confinement fusion. It uses a multipass main amplifier, adaptive optics, and efficient, high-fluence frequency conversion to the third harmonic. The Beamlet amplifier contains Brewster-angle glass slabs with a clear aperture of 39 cm x 39 cm and a full-aperture plasma-electrode Pockels cell switch. It has been successfully tested over a range of pulse lengths from 1-10 ns up to energies at 1.053 mum of 5.8 kJ at 1 ns and 17.3 kJ at 10 ns. A 39-actuator deformable mirror corrects the beam quality to a Strehl ratio of as much as 0.4. The 1.053-mum output has been converted to the third harmonic at efficiencies as high as 80% and fluences as high as 8.7 J/cm(2) for 3-ns pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.