A: A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 µm, thicknesses 300 µm and 500 µm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.
K: Neutron detectors (cold, thermal, fast neutrons); Particle identification methods; Particle tracking detectors (Solid-state detectors); Solid state detectors 1Corresponding author.
A: Depleted Monolithic Active Pixel Sensor (DMAPS) prototypes developed in the TowerJazz 180 nm CMOS imaging process have been designed in the context of the ATLAS upgrade Phase-II at the HL-LHC. The pixel sensors are characterized by a small collection electrode (3 µm) to minimize capacitance, a small pixel size (36.4 × 36.4 µm), and are produced on high resistivity epitaxial p-type silicon. The design targets a radiation hardness of 1 × 10 15 1 MeV n eq /cm 2 , compatible with the outermost layer of the ATLAS ITK Pixel detector. This paper presents the results from characterization in particle beam tests of the Mini-MALTA prototype that implements a mask change or an additional implant to address the inefficiencies on the pixel edges. Results show full efficiency after a dose of 1 × 10 15 1 MeV n eq /cm 2 .
A: Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. Depleted fully monolithic CMOS pixels with fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-MonoPix and TJ-MonoPix, are presented. LF-MonoPix was designed and fabricated in the LFoundry 150 nm CMOS technology, and TJ-MonoPix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The design of the two prototypes will be described. First measurement results for LF-MonoPix will also be shown.
K: Depleted monolithic CMOS pixels, particle tracking detectors (solid-state detectors), Front-end electronics for detector readout, VLSI circuit 1Corresponding author.
A: Two different depleted monolithic CMOS active pixel sensor (DMAPS) prototypes with a fully synchronous column-drain read-out architecture were designed and tested: LF-Monopix and TJ-Monopix. These chips are part of a R&D effort towards a suitable implementation of a CMOS DMAPS for the HL-LHC ATLAS Inner Tracker. LF-Monopix was developed using a 150nm CMOS process on a highly resistive substrate (>2 kΩ cm), while TJ-Monopix was fabricated using a modified 180 nm CMOS process with a 1 kΩ cm epi-layer for depletion. The chips differ in their front-end design, biasing scheme, pixel pitch, dimensions of the collecting electrode relative to the pixel size (large and small electrode design, respectively) and the placement of read-out electronics within such electrode.Both chips were operational after thinning down to 100 µm and additional back-side processing in LF-Monopix for total bulk depletion. The results in this work include measurements of their leakage current, noise, threshold dispersion, response to minimum ionizing particles and efficiency in test beam campaigns. In addition, the outcome from measurements after irradiation with neutrons up to a dose of 1 × 10 15 n eq /cm 2 and its implications for future designs are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.