Background Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in prosthetic devices. Its failure under various mechanisms after oxidation is of utmost concern. Free radicals formed during the sterilization process using high-energy irradiation result in oxidation. Europium, an element of the lanthanide family, has a unique electron configuration with an unusual lack of preference for directional bonding and notable bonding to oxygen. Because of this, it currently is used in studies for stabilization of polymers such as polyvinyl chloride. Questions/purposes We asked whether europium stearate could enhance the oxidation resistance after irradiation in nitrogen of UHMWPE. Methods Conventional nonirradiated and gammairradiated in nitrogen UHMWPE were compared with polyethylene doped with 375 ppm and 3750 ppm europium(III) stearate under the same treatment conditions. Chemical characterization was performed by Fourier transform infrared (FTIR) microspectroscopy using 200-lm thin films. The oxidation of doped samples with time was compared with that of conventional samples using accelerated oven aging. The types of oxidation products were identified by FTIR and quantified per material and treatment condition as indications of the oxidation level and mechanism. Results The generation rate of hydroperoxides and ketones was decelerated proportionally with concentration of europium stearates. The oxidative mechanism appeared similar to that of conventional polyethylene with the same types of measurable end products as ketones and hydroperoxides. Yet, the rate of generation of the latter appeared to be slowed down by the action of europium stearate. Conclusions Europium stearate mixed in UHMWPE decelerated the oxidation reactions triggered by gamma irradiation in nitrogen, seemingly without major alteration of the oxidation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.