To investigate the formation of mobile organic plutonium, we analyzed the plutonium contents of the fulvic (FA) and humic (HA) acids from the soil samples obtained at Nishiyama, Nagasaki, Japan. The percentages of the plutonium bound strongly to HA and to FA vs. the total plutonium in the soil were 5-10% and 1%, respectively, at the depth of 0-0.1 m, much higher values than those of 137Cs and uranium. After being weathered for 51 years under a temperate climate, the initial highfired oxides of fallout plutonium have become as chemically reactive plutonium from nuclear fuel reprocessing plants.
The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients {Kd (mlig)} as an index of the radionuclide behaviour. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 pu, which can check the experimental procedures and mass balance.Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 pu when compared to the mixture of dead bacteria with bentonite. The plutonium Kd values for bentonite alone, both non-sterilized and sterilized, were within a constant range of around 10,000 even though some of the data are not yet available.The bentonite used for this experiment was a product of Japan and the sulfate reducing anaerobic bacteria was previously used for the treatment of a pulp and paper wastewater. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behaviour of plutonium in geologic repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.