The transition from unicellular to multicellular life was one of a few major events in the history of life that created new opportunities for more complex biological systems to evolve. Predation is hypothesized as one selective pressure that may have driven the evolution of multicellularity. Here we show that de novo origins of simple multicellularity can evolve in response to predation. We subjected outcrossed populations of the unicellular green alga Chlamydomonas reinhardtii to selection by the filter-feeding predator Paramecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in unselected control populations within ~750 asexual generations. Considerable variation exists in the evolved multicellular life cycles, with both cell number and propagule size varying among isolates. Survival assays show that evolved multicellular traits provide effective protection against predation. These results support the hypothesis that selection imposed by predators may have played a role in some origins of multicellularity.
In animals and plants, non-coding small RNAs regulate the expression of many genes at the post-transcriptional level. Recently, many non-coding small RNAs (sRNAs) have also been found to regulate a variety of important biological processes in bacteria, including social traits, but little is known about the phylogenetic or mechanistic origins of such bacterial sRNAs. Here we propose a phylogenetic origin of the myxobacterial sRNA Pxr, which negatively regulates the initiation of fruiting body development in Myxococcus xanthus as a function of nutrient level, and also examine its diversification within the Myxococcocales order. Homologs of pxr were found throughout the Cystobacterineae suborder (with a few possible losses) but not outside this clade, suggesting a single origin of the Pxr regulatory system in the basal Cystobacterineae lineage. Rates of pxr sequence evolution varied greatly across Cystobacterineae sub-clades in a manner not predicted by overall genome divergence. A single copy of pxr was found in most species with 17% of nucleotide positions being polymorphic among them. However three tandem paralogs were present within the genus Cystobacter and these alleles together exhibited an elevated rate of divergence. There appears to have been strong selection for maintenance of a predicted stem-loop structure, as polymorphisms accumulated preferentially at loop or bulge regions or as complementary substitutions within predicted stems. All detected pxr homologs are located in the intergenic region between the σ(54)-dependent response regulator nla19 and a predicted NADH dehydrogenase gene, but other neighboring gene content has diversified.
The transition from unicellular to multicellular life was one of a few major events in the history of life that created new opportunities for more complex biological systems to evolve. However, understanding the proximate and ultimate causes of the resulting increases in complexity remains a major challenge for evolutionary biology. Questions related to the emergence of multicellularity have traditionally been addressed through retrospective, comparative studies of extant unicellular and multicellular lineages.Experimental microbial evolution allows prospective studies that observe evolution in real time. We have generated a de novo origin of simple multicellularity in response to predation. We subjected outcrossed populations of the unicellular green alga Chlamydomonas reinhardtii to selection by the filter-feeding predator Paramecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in any of the three unselected control populations within ~300 asexual generations. Considerable variation exists in the evolved multicellular life cycles, with both cell number and propagule size varying among isolates. Survival assays show that multicellularity provides some protection against predation. These results support the hypothesis that selection imposed by predators may have played a role in some origins of multicellularity.
Small non-coding RNAs (sRNAs) control bacterial gene expression involved in a wide range of important cellular processes. In the highly social bacterium Myxococcus xanthus, the sRNA Pxr prevents multicellular fruiting-body development when nutrients are abundant. Pxr was discovered from the evolution of a developmentally defective strain (OC) into a developmentally proficient strain (PX). In OC, Pxr is constitutively expressed and blocks development even during starvation. In PX, one mutation deactivates Pxr allowing development to proceed. We screened for transposon mutants that suppress the OC defect and thus potentially reveal new Pxr-pathway components. Insertions significantly restoring development were found in four genes-rnd, rnhA, stkA and Mxan_5793-not previously associated with an sRNA activity. Phylogenetic analysis suggests that the Pxr pathway was constructed within the Cystobacterineae suborder both by co-option of genes predating the Myxococcales order and incorporation of a novel gene (Mxan_5793). Further, the sequence similarity of rnd, rnhA and stkA homologs relative to M. xanthus alleles was found to decrease greatly among species beyond the Cystobacterineae suborder compared to the housekeeping genes examined. Finally, ecological context differentially affected the developmental phenotypes of distinct mutants, with implications for the evolution of development in variable environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.