SUMMARYThe polypeptides induced in cells infected with a Glasgow isolate of HSV-I (I 7 syn +) have been characterized by SDS polyacrylamide gel electrophoresis.Study of the kinetics of synthesis in three cell lines has detected a total of 52 polypeptides, 33 of which can be identified in polypeptide profiles of purified virions. These include six low mol. wt. polypeptides that have not been previously reported. Several polypeptides were labelled with glucosamine in infected BHK cells.The different polypeptide patterns obtained at permissive (31 °C) and nonpermissive (38 °C) temperature in cells infected with 16 temperature-sensitive (ts) mutants are reported. The effect of multiplicity of infection (m.o.i.) on the polypeptide profile has been examined for two of the DNA -ve mutants: below ten, the profile varied with the m.o.i, whereas above ten it was constant. All mutants were therefore examined at an m.o.i, of approx. 20. Mutants from the same complementation group showed very similar profiles.A number of general conclusions concerning control of protein synthesis in HSV infected cells can be made: (I) As most of the 16 ts mutants affected the synthesis of several or many polypeptides it follows that a large proportion of the genome specifies controlling functions. (2) The high frequency with which some polypeptides were affected suggests they are at or near the terminus of biosynthetic pathways which are under multiple control. (3) Conversely, some polypeptides were affected with a low frequency suggesting that their synthesis is not dependent on the expression of many virus functions. (4) Several individual ts mutations lead to the synthesis of increased amounts of different large polypeptides. (5) Analysis of every band detectably affected by at least one ts mutation has disclosed nine classes of dependence relationship between polypeptide synthesis and the DNA phenotype of the mutants, illustrating that this relationship is complex and different for different polypeptides. (6) The inhibition of host protein synthesis by the virus may not be a simple single step process.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsBand tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsd-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.