A series of six studies were carried out in red deer stags to test hypotheses concerning the importance of steroid control of velvet antler growth and to investigate mechanisms by which these hormones exert their effects. Medroxyprogesterone acetate (MPA) an LH inhibitor administered to stags during hard antler caused premature antler casting, reduced subsequent antler weight and caused a reduction in the LH and testosterone responses to GnRH. In two separate studies blockade of testosterone receptors with cyproterone acetate (CPA) administered to stags, either during early velvet antler growth or during the hard antler stage, significantly reduced LH and testosterone responses to GnRH. In both studies antler length, but not weight, was increased by CPA treatment. In another study testosterone implants were used to prevent the gradual decline in plasma testosterone levels normally observed during winter. Implants were removed 3 weeks before the anticipated date of antler casting. The implants significantly increased plasma testosterone levels and subsequent antler growth (expressed as a proportional increase compared with the previous year) compared with untreated controls. To determine whether the annual cycle of plasma testosterone response following GnRH stimulation was due simply to a lack of LH stimulation, ovine LH was injected on six occasions at defined stages of the antler cycle to red deer stags and the testosterone response measured. The testosterone responses were low at antler casting and during velvet antler growth compared with antler cleaning and peak rut. It appears low testosterone levels are due, in part, to a loss of responsiveness by the testes to LH as well as a low level of secretion of LH during the antler growing season. Finally synthetic ACTH was injected at the same defined stages of antler growth as in the previous study to determine whether cortisol and adrenal androgen production altered with the stage of the antler cycle. No significant differences were found in the dehydroepiandrosterone (DHEA) response, but cortisol responses were higher from late velvet antler growth to peak rut, compared with the times of antler casting and early velvet growth. Overall it was concluded that velvet antler growth can occur without testosterone stimulation during the period of velvet growth, but the data reinforce the concept that the timing of antler growth is linked to the annual cycle of testosterone.
We have investigated the possibility that IGF-1 may play a role in the regulation of antler development. Plasma IGF-1 concentrations were measured throughout the first period of development of the pedicle and first antler of red deer (Cervus elaphus) to determine whether a relationship existed between growth of antler cartilage (velvet antler) and IGF-1. We report that plasma levels of IGF-1 are significantly elevated during the velvet antler growing phase relative to the other phases of pedicle and first antler development and a strong positive correlation exists between antler growth rate and circulating concentrations of IGF-1. As IGF-1 has been demonstrated to influence cartilage growth, we suggest that IGF-1 is a candidate as an antler stimulating hormone.
Plasma samples taken every 30 min over a 26-h period each month from six 4- to 15-month-old red deer stags were analysed for GH. In addition, two samples taken at 10.00 and 22.00 h were analysed for insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II). A concentrate diet was available ad libitum. Food intake, body weight and antler status were recorded. Concentrations of GH were analysed using the PULSAR peak detection routine. Secretion of GH was pulsatile in every month of sampling, but the pattern of pulsatility differed seasonally. During the autumn and early winter (April-June in the Southern hemisphere) GH pulses were frequent and of low amplitude. In contrast, GH pulses in spring (August-September) were of high amplitude and high frequency resulting in a high mean level of GH circulating in the plasma. In early summer (November) the GH pulse amplitude was much lower and pulse frequency fell. There was a rise in GH pulse frequency not accompanied by an increase in GH pulse amplitude in summer (December-January). GH pulse amplitude seemed to be the main determinant of mean GH plasma level. Secretion of IGF-I was raised 1 month after peak monthly mean GH secretion. There was little consistent relationship between concentrations of IGF-II and mean daily GH. Concentrations of GH correlated positively and significantly with liveweight gain and antler growth rate with a delay of 1 month. Significantly positive correlations between concentrations of IGF-I, liveweight gain and antler growth rate were observed. It is considered that the spring and summer (September-December) seasonal acceleration of liveweight gain and antler development in stags could be a consequence of high winter/early spring (August-September) GH pulse frequency and amplitude resulting in increased concentrations of IGF-I, particularly in October.
Blood samples were taken from six tame red deer stags at 3-15 months of age once a month from a jugular catheter every 30 min for 24 h to investigate hormonal secretion during puberty and during growth of the pedicle and first antler. All plasma samples were analysed for LH and testosterone concentrations and the resultant data were analysed using the PULSAR pulse detection routine. In addition each stag was injected wih gonadotrophin-releasing hormone (GnRH; 20 ng/kg body weight) after the above samples had been taken and the bleeding regimen was continued for a further 2 h. Body weight, antler size and status (i.e. whether the stags had a pedicle or antler) were also recorded. The pulsatile secretion of LH could be considered to have occurred in three phases. The first of these was one of development, with the LH pulse frequency increasing to 8 pulses/24 h, the second a phase of regression, with a decrease in LH pulse frequency to 2 pulses/24 h, and finally a second phase of development characterized by increased LH pulse frequency to 12 pulses/24 h. Testosterone secretion generally followed the same pattern. During the period before the permanent bony pedicles grew, there were less than five LH pulses/24 h. When the pedicles were growing, LH and testosterone pulsatile secretion increased but the pulse frequency of both hormones fell during velvet antler growth.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.