Analysis of forming chromium-bearing ferroalloys production waste in Russian Federation was performed. Chemical, phase, fractional compositions and physico-chemical, technological properties of high-carbon ferrochromium slag were defined. Physico-chemical, thermo-mechanical and thermo-physical properties of fire-resistant materials, obtained from ferrochromium production slag and dust, were researched. It was shown that researched waste may be utilized as raw for fire-resistant materials production. Because of their chemical and phase composition, researched materials may be utilized for production of forsterite-spinel-based and forsterite-spinel-periclase-based fire-resistant materials. Technological properties of researched materials allow obtaining dense strength fire-resistant materials. Such fire-resistant materials are promising in the field of ferrous metallurgy (lining up furnaces, ladles and overflow launders in ferroalloys production).
The issues of obtaining aluminum oxide from man-made materials, the issues of differences in the structure, composition and properties of alumina obtained by different technological methods and the issues of providing high-alumina materials to the domestic ceramic, electronic and refractory industries are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.