Ultrafast strong-field ionization is shown to be accompanied by atypical multiwave mixing with the number of mixed waves defined by the dependence of the ionization rate on the field strength. For two-color laser pulses of various frequency ratios, this results in the excitation of a free-electron current at laser combination frequencies and possibly in the excitation of the zero-frequency (residual) current responsible for terahertz (THz) generation in a formed plasma. The high-order nature of ionization-induced wave mixing may cause THz generation with uncommon laser frequency ratios (such as 2:3 and 3:4) to be virtually as effective as that with the commonly used frequency ratio of 1:2.
Ionization-induced multiwave mixing is attracting much interest nowadays due to the possibility of generating short pulses of secondary radiation over a very wide spectral range, from terahertz to far ultraviolet. This paper presents an analytical method for calculating the amplitudes of arbitrary spectral components of free electron currents arising under the action of multicolor ionizing laser pulses. We show that this method can be used to obtain the dependences of characteristics of a frequency-tunable third harmonic of the intense component of a three-color pulse obtained in an optical parametric generator. The obtained results are in good agreement with quantum mechanical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.