Angiotensin-converting enzyme (ACE) is known to be released from human spermatozoa during capacitation. However, it has not yet been localized ultrastructurally in ejaculated sperm cells. Therefore, the purpose of the present study was to demonstrate the location of ACE by means of immunoelectron microscopy and direct immunofluorescence. In addition, ACE activity of spermatozoa was correlated with standard semen parameters. The activity of angiotensin-converting enzyme was measured in spermatozoa from 115 donors and patients attending the andrological outpatient department. Progressive motility was negatively correlated with sperm ACE activity (Spearman rank correlation r=-0.364, P < 0.0001), whereas no statistically significant correlations with sperm concentration, total motility and morphology were observed. Immunoelectron microscopy demonstrated that ACE is mainly located at the plasma membrane of the acrosomal region, equatorial segment, postacrosomal region and midpiece. In contrast, only weak ACE-like immunoreactivity was found at the flagellum. In cases of cells with missing plasma membranes ACE seems also to be located at the surface of the outer acrosomal membrane. By means of immunohistochemical methods, different patterns of ACE-like immunofluorescence were observed: (i) fluorescence of the acrosome or the entire sperm head, midpiece and flagellum; (ii) fluorescence of the postacrosomal region, midpiece and flagellum; (iii) bright fluorescence of the equatorial segment with less intensive labelling of the postacrosomal region and flagellum. Induction of the acrosome reaction by calcium ionophore A23187 resulted in an increase of spermatozoa with weak acrosomal fluorescence, indicating loss of the plasma membrane.
Prostatic smooth muscle cells have been regarded to play a major pathogenetic role during the development of benign prostatic hyperplasia (BPH) in elderly men. Altered hormonal signals (increased estrogen) have been made responsible for the "metabolic" transformation of prostatic smooth muscle cells, which were thought to produce increased amounts of connective tissue fibers observed in BPH. In order to find out the role of metabolically "activated" smooth muscle cells, hormone stimulation experiments were performed in male rats. The effects of androgen deprivation and estrogen stimulation were recorded by semiquantitative analysis of intermediate and myofilament proteins in stromal smooth muscle cells. In castrated or estrogen-treated or estrogen-treated and castrated animals, the reduction of the glandular lumen is the most obvious morphological alteration, accompanied by an increase in connective tissue. Regressive changes occurred most rapidly in castrated animals (already within the first week), slower in castrated estrogen-treated animals and still slower in normal estrogen-treated animals. Regression of the epithelium was accompanied by a marked decrease in immunoreactivity for prostatic binding protein (PBP) in castrated animals, while PBP immunoreactivity in estrogenized animals was retained for up to 6 weeks. Smooth muscle cells became atrophic in castrated animals. This effect was attenuated in estrogen-treated animals. There was no indication for enhanced collagen synthesis by smooth muscle cells. Actin and desmin-immunoreactivity were only slightly altered in experimental animals and showed a changed distribution pattern. Prostatic smooth muscle cells respond less markedly to hormonal alterations than do the fibroblasts.
Antibodies against 10 different secretory proteins from the accessory sex glands of the male rat were used for immunohistochemical studies of salivary and lacrimal glands from intact and castrated rats, at the light- and electron-microscopic levels. In the parotid gland, secretory acinar cells showed immunoreactivity with antibodies against prostatic binding protein, cystatin-related peptide and acid phosphatase (isoenzyme pI 8.0; 5.6) typical of ventral prostate, and seminal vesicle secretion VI. Western blotting analysis indicated that immunoreactivity against prostatic binding protein was attributable to a subunit, presumably C3. Acid phosphatase pI 5.6 showed a molecular weight of 66 kDa, which is at variance with the prostatic form. Immunoreactivity for secretory transglutaminase, derived from the coagulating gland, was restricted to myoepithelial and stromal cells. In castrated animals, the immunoreactivity of acinar cells was reduced to the background level, whereas stromal transglutaminase immunoreactivity was unaltered. The distribution pattern of immunoreactivity for the proteins mentioned was almost identical in the lacrimal gland. Significant differences were however observed in the immunoreactivity of the inframandibular gland, where serous glandular cells were non-immunoreactive for seminal proteins, with the exception of acid phosphatase isoenzyme pI 8.0. Granules present in the convoluted granular ducts were immunoreactive particularly for acid phosphatase (isoenzyme pI 5.6) but much less for cystatin-related peptide; immunoreactivity was reduced after castration. The straight portion of the inframandibular duct system was immunoreactive for transglutaminase, but no influence of castration was visible. The distribution of immunoreactivity for seminal proteins present in the salivary and lacrimal glands and the pronounced androgen-dependence of their expression point to functional relationships of the respective proteins at both glandular sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.