Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats. evolutionary genomics ͉ fermentation L actic acid bacteria (LAB) are historically defined as a group of microaerophilic, Gram-positive organisms that ferment hexose sugars to produce primarily lactic acid. This functional classification includes a variety of industrially important genera, including Lactococcus, Enterococcus, Oenococcus, Pediococcus, Streptococcus, Leuconostoc, and Lactobacillus species. The seemingly simplistic metabolism of LAB has been exploited throughout history for the preservation of foods and beverages in nearly all societies dating back to the origins of agriculture (1). Domestication of LAB strains passed down through various culinary traditions and continuous passage on food stuffs has resulted in modern-day cultures able to carry out these fermentations. Today, LAB play a prominent role in the world food supply, performing the main bioconversions in fermented dairy products, meats, and vegetables. LAB also are critical for the production of wine, coffee, silage, cocoa, sourdough, and numerous indigenous food fermentations (2).LAB species are indigenous to food-related habitats, including plant (fruits, vegetables, and cereal grains) and milk environments. In addition, LAB are naturally associated with the mucosal surfaces of animals, e.g., small intestine, colon, and vagina. Isolates of the same species often are obtained from plant, dairy, and animal habitats, implying wide distribution and specialized adaptation to these diverse environments. LAB species employ two pathways to metabolize hexose: a homofermentative pathway in which lactic acid is the primary product and a heterofermentative pathway in which lactic acid, CO 2 , acetic acid, and͞or ethanol are produced (3).Complete genome sequences have been published for eight fermentative and commensal LAB species: Lactococcus lactis, Lactobacillus plantarum, Lactobacillus johnsonii, Lactobacillus acidophilus, Lactobacillus sakei, Lactobacillus bulgaricus, Lactobacillus salivarius, and Streptococcus thermophilus (4-11). This study examines nine other LAB genomes representing the phylogenetic and functional diversity of lactic acid-producing microorganisms. The LAB have small genomes encoding a range of biosynthe...
Aims: To identify potential pathways for citrate catabolism by Lactobacillus casei under conditions similar to ripening cheese. Methods and Results: A putative citric acid cycle (PCAC) for Lact. casei was generated utilizing the genome sequence, and metabolic flux analyses. Although it was possible to construct a unique PCAC for Lact. casei, its full functionality was unknown. Therefore, the Lact. casei PCAC was evaluated utilizing end‐product analyses of citric acid catabolism during growth in modified chemically defined media (mCDM), and Cheddar cheese extract (CCE). Results suggest that under energy source excess and limitation in mCDM this micro‐organism produces mainly l‐lactic acid and acetic acid, respectively. Both organic acids were produced in CCE. Additional end products include d‐lactic acid, acetoin, formic acid, ethanol, and diacetyl. Production of succinic acid, malic acid, and butanendiol was not observed. Conclusions: Under conditions similar to those present in ripening cheese, citric acid is converted to acetic acid, l/d‐lactic acid, acetoin, diacetyl, ethanol, and formic acid. The PCAC suggests that conversion of the citric acid‐derived pyruvic acid into acetic acid, instead of lactic acid, may yield two ATPs per molecule of citric acid. Functionality of the PCAC reductive route was not observed. Significance and Impact of the Study: This research describes a unique PCAC for Lact. casei. Additionally, it describes the citric acid catabolism end product by this nonstarter lactic acid bacteria during growth, and under conditions similar to those present in ripening cheese. It provides insights on pathways preferably utilized to derive energy in the presence of limiting carbohydrates by this micro‐organism.
Conditions required for citrate utilization by Lactobacillus casei ATCC334 were identified. Citrate was utilized by this microorganism in modified Chemically Defined Media (mCDM) as an energy source, solely in the presence of limiting concentrations of galactose. The presence of glucose inhibited citrate utilization by this microorganism even when added in limiting concentrations. Utilization of citrate occurred at pH 6.0 +/- 0.2 and 5.1 +/- 0.2. Together these observations suggest that citrate is an energy source for L. casei in ripening cheese only when the residual levels of carbohydrate post-fermentation are limiting (<2.5 mM), and lactose or glucose are absent. However, citrate utilization by this organism was observed in Cheddar cheese extract (CCE), which naturally contains both lactose and galactose, at the beginning of late-logarithmic phase and regardless of the galactose concentration present in the media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.