Summary We introduce Bayesian uncertainty‐directed (BUD) designs for phase I–II dose finding trials. This class of designs assigns patients to candidate dose levels with the aim of maximizing explicit information metrics at completion of the trial, while avoiding the treatment of patients with toxic or ineffective dose levels during the trial. Explicit information metrics provide, at completion of the clinical study, accuracy measures of the final selection of optimal or nearly optimal dose levels. The BUD approach utilizes the decision theoretic framework and builds on utility functions that rank candidate dose levels. The utility of a dose combines the probabilities of toxicity events and the probability of a positive response to treatment. We discuss the application of BUD designs in two distinct settings; dose finding studies for single agents and precision medicine studies with biomarker measurements that allow dose optimization at the individual level. The approach proposed and the simulation scenarios used in the evaluation of BUD designs are motivated by a stereotactic body radiation therapy study in lung cancer at our institution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.