(1) TKA implants should well fit on each patient’s anatomy. Statistical Shape Models (SSM) statistically represent the anatomy of a given population. The aims of this study were to assess how to generate a valid SSM for implant design and provide guidelines and examples on how to use the SSMs to evaluate the anatomic fit of TKA components. (2) Methods: A Caucasian SSM was built from 120 anatomies (65 female, 55 male) and an Asian SSM was based on 112 patients (75 female, 37 male). These SSMs were used to generate a database of 20 bone models. The AP/ML dimensions of the bone models were compared to those of the input population. Design input parameters, such as the tibial contour, trochlea, and femur curvature were extracted from the SSMs. Femur and patella components were virtually implanted on the bone models. (3) Results: the dimensions of the generated bone models well represented the population. The overhang of the femoral component as well as the coverage and peak restoration of the patella component were visualized. (4) Conclusions: SSMs can be used to efficiently gain input into TKA design and evaluate the implant fit on the studied population.
In total hip replacement, patient placement in the lateral position is preferred by many surgeons. However, it complicates registration of the so-called pelvic coordinate system that is the standard reference for surgeons to measure cup orientation. This coordinate system comprises the anterior pelvic plane and the mid-sagittal plane, and it is conventionally registered on the basis of bony anatomical landmarks including the left and the right anterior superior iliac spine (ASIS). Ultrasound has been suggested for transcutaneous palpation of the bone surface. The difficulty in registration of the pelvic coordinate system with the patient in the lateral position arises because the contralateral ASIS cannot be reached easily by a mechanical pointer and is not accessible by means of an ultrasound probe. Up to now, methods to compensate for these missing data have not been used in clinical routine. This paper describes a new ultrasound-based method that requires neither image segmentation nor statistical shape models and uses symmetry to approximate the position of the contralateral ASIS. A detailed analysis based on computed tomography data of 60 hips following a cadaver study is presented to show the ability of our method to reliably reconstruct the pelvic coordinate system. The median angles between ground truth planes and the "reconstructed" planes were <2°. By choosing a standard cup orientation w.r.t. the "reconstructed" planes, the median abduction and version angle errors were <2°, too.
The isolated effects of patellar resurfacing on patellar kinematics are rarely investigated. Nonetheless, knowing more about these effects could help to enhance present understanding of the emergence of kinematic improvements or deteriorations associated with patellar resurfacing. The aim of this study was to isolate the effects of patellar resurfacing from a multi-stage in vitro study, where kinematics after total knee arthroplasty before and after patellar resurfacing were recorded. Additionally, the influence of the native patellar geometry on these effects was analysed. Eight fresh frozen specimens were tested successively with different implant configurations on an already established weight bearing knee rig. The patello-femoral kinematics were thereby measured using an ultrasonic measurement system and its relation to the native patellar geometries was analysed. After patellar resurfacing, the specimen showed a significantly medialized patellar shift. This medialization of the patellar tracking was significantly correlated to the lateral facet angle of the native patella. The patellar shift after patellar resurfacing is highly influenced by the position of the patellar button and the native lateral patellar facet angle. As a result, the ideal medio-lateral position of the patellar component is affected by the geometry of the native patella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.