Reliable indicators of rapid drought onset can help to improve the effectiveness of drought early warning systems. In this study, the evaporative stress index (ESI), which uses remotely sensed thermal infrared imagery to estimate evapotranspiration (ET), is compared to drought classifications in the U.S. Drought Monitor (USDM) and standard precipitation-based drought indicators for several cases of rapid drought development that have occurred across the United States in recent years. Analysis of meteorological time series from the North American Regional Reanalysis indicates that these events are typically characterized by warm air temperature and low cloud cover anomalies, often with high winds and dewpoint depressions that serve to hasten evaporative depletion of soil moisture reserves. Standardized change anomalies depicting the rate at which various multiweek ESI composites changed over different time intervals are computed to more easily identify areas experiencing rapid changes in ET. Overall, the results demonstrate that ESI change anomalies can provide early warning of incipient drought impacts on agricultural systems, as indicated in crop condition reports collected by the National Agricultural Statistics Service. In each case examined, large negative change anomalies indicative of rapidly drying conditions were either coincident with the introduction of drought in the USDM or lead the USDM drought depiction by several weeks, depending on which ESI composite and time-differencing interval was used. Incorporation of the ESI as a data layer used in the construction of the USDM may improve timely depictions of moisture conditions and vegetation stress associated with flash drought events.
Soil moisture is considered to be a key variable to assess crop and drought conditions. However, readily available soil moisture datasets developed for monitoring agricultural drought conditions are uncommon. The aim of this work is to examine two global soil moisture datasets and a set of soil moisture web-based processing tools developed to demonstrate the value of the soil moisture data for drought monitoring and crop forecasting using the Google Earth Engine (GEE). The two global soil moisture datasets discussed in the paper are generated by integrating the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions' satellite-derived observations into a modified two-layer Palmer model using a one-dimensional (1D) ensemble Kalman filter (EnKF) data assimilation approach. The web-based tools are designed to explore soil moisture variability as a function of land cover change and to easily estimate drought characteristics such as drought duration and intensity using soil moisture anomalies and to intercompare them against alternative drought indicators. To demonstrate the utility of these tools for agricultural drought monitoring, the soil moisture products and vegetation-and precipitation-based products were assessed over drought-prone regions in South Africa and Ethiopia. Overall, the 3-month scale Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) showed higher agreement with the root zone soil moisture anomalies. Soil moisture anomalies exhibited lower drought duration, but higher intensity compared with SPIs. Inclusion of the global soil moisture data into the GEE data catalog and the development of the web-based tools described in the paper enable a vast diversity of users to quickly and easily assess the impact of drought and improve planning related to drought risk assessment and early warning. The GEE also improves the accessibility and usability of the earth observation data and related tools by making them available to a wide range of researchers and the public. In particular, the cloud-based nature of the GEE is useful for providing access to the soil moisture data and scripts to users in developing countries that lack adequate observational soil moisture data or the necessary computational resources required to develop them. soil moisture monitoring offers, such as global coverage, high accuracy, and high temporal frequency essential for operational applications, the shallow penetration depth of the microwave frequencies used for soil moisture monitoring remains a limiting factor [3]. In fact, many hydrological processes and forecasting and decision-making activities linked to soil moisture require knowledge of the root zone soil moisture (RZSM) information. The latter is typically estimated using hydrologic land surface models, which are traditionally driven by some weather-related observations such as precipitation, temperature, and so forth. The credibility of the modeled RZSM estimates is strongly dependent on the quality of the for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.