The functioning of various systems (in particular technical objects, living cells, the atmosphere and the ocean, etc.) is determined by the course of physical and physico-chemical processes in them. In order to model physicochemical processes in the general case, the authors previously developed a potential-flow method based on an experimental study (on the results of system tests) of the properties of substances and processes. In the general case, from these experimental data, many possible values of these properties are obtained. Knowing these properties of substances and processes, the initial state of the system, external influences on it (or the set of possible values of these quantities), we can analyze the dynamics of physicochemical processes in this system, and from it the dynamics of the characteristics of this system that have practical meaning. Thus, from the system of equations of this method, a relationship is obtained between the unobservable characteristics of these systems with the observed characteristics of the systems and laboratory systems under consideration (in which the properties of substances and processes in the system under study are experimentally studied). As the potential flow equations describing the physicochemical processes are generally quite complicated for analytical transformations, the aforementioned relationship must be obtained by numerical methods. The present work is devoted to the use of deep learning as a universal approximator for obtaining the described connection between the characteristics of arbitrary systems. These models are trained on the dynamics of the characteristics of the systems under consideration, obtained from potential-flow equations of physicochemical processes in them for different values of the parameters that determine the properties of substances and processes in these systems, their initial states, and external influences.
Данная работа посвящена разработке алгоритма численного интегрирования системы дифференциальных уравнений потенциально-потокового метода моделирования неравновесных процессов. Этот метод был разработан автором в опубликованных им ранее работах. В настоящей работе рассмотрение ограничивается системами с сосредоточенными параметрами. Также ранее была разработана автором методика анализа корректности приближенного решения системы потенциально-потоковых уравнений для систем в сосредоточенных параметрах. Целью настоящей статьи является объединение этой методики с современными численными методами интегрирования систем обыкновенных дифференциальных уравнений и разработка методики численного интегрирования систем уравнений потенциально-потокового метода, позволяющей гарантировать корректность приближенного решения.Ключевые слова: потенциально-потоковый метод, уравнения потенциально-потокового метода, численное интегрирование уравнений, анализ корректности приближенного решения
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.