The transition zone between the Alps and Dinarides is a key area to investigate kinematic interactions of neighboring orogens with different subduction polarities. A study combining field kinematic and sedimentary data, microstructural observations, thermochronological data (Rb‐Sr and fission track), and regional structures in the area of Medvednica Mountains has revealed a complex polyphase tectonic evolution. We document two novel stages of extensional exhumation. The first stage of extension took place along a Late Cretaceous detachment following the late Early Cretaceous nappe stacking, burial, and greenschist facies metamorphism. Two other shortening events that occurred during the latest Cretaceous‐Oligocene were followed by a second event of extensional exhumation, characterized by asymmetric top‐NE extension during the Miocene. Top‐NW thrusting took place subsequently during the Pliocene inversion of the Pannonian Basin. The Cretaceous nappe burial, Late Cretaceous extension, and the Oligocene(‐Earliest Miocene) contraction are events driven by the Alps evolution. In contrast, the latest Cretaceous‐Eocene deformation reflects phases of Dinaridic contraction. Furthermore, the Miocene extension and subsequent inversion display kinematics similar with observations elsewhere in the Dinarides and Eastern Alps. All these processes demonstrate that the Medvednica Mountains were affected by Alpine phases of deformations to a much higher degree than previously thought. Similarly with what has been observed in other areas of contractional polarity changes, such as the Mediterranean, Black Sea, or New Guinea systems, the respective tectonic events are triggered by rheological weak zones which are critical for localizing the deformation created by both orogens.
New structural and thermochronological (zircon and apatite fission track) data from the eastern most Alps highlight distinct deformation phases affecting the Austroalpine unit along a major sinistral strike-slip fault system, the Mur-Mürz fault (MMF). The data link deformation to vertical motions prior to, during, and after the main phase of lateral extrusion of the orogen. Zircon fission track ages document rapid (ca. 15°C/Myr) and diachronous (eastward younging) cooling and rock exhumation during the latest Cretaceous to Paleocene. Subsequent regional Eocene to early Miocene cooling below the closure temperature of the apatite fission track system occurred at slow rates (ca. 2°C/Myr), suggesting that the region was not subject to major surface uplift and erosion during that period. Fault kinematic analysis along the MMF document pre-extrusion NNW-SSE contraction, middle Miocene syn-extrusion NE-SW to NNE-SSW directed shortening, and Late Miocene E-W contraction. All phases are characterized by strike-slip fault regimes. Formation of the complex MMF zone triggered the exhumation of small, fault-bound crustal blocks within the fault zone as documented by middle Miocene apatite fission track ages. Overall, ages are similar on both sides of the fault suggesting that lateral extrusion along the MMF was not associated with significant differential vertical motions. Local Pliocene rock cooling and exhumation was probably related to the buttressing effect of the underthrust Bohemian basement spur. Whereas large-scale, post-extrusion surface uplift of the extruding crustal wedges, such as the "Styrian block," must have been related to long-wavelength deformation processes affecting the easternmost Alps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.