Flavescence doré e (FD) is a European quarantine grapevine disease transmitted by the Deltocephalinae leafhopper Scaphoideus titanus. Whereas this vector had been introduced from North America, the possible European origin of FD phytoplasma needed to be challenged and correlated with ecological and genetic drivers of FD emergence. For that purpose, a survey of genetic diversity of these phytoplasmas in grapevines, S. titanus, black alders, alder leafhoppers and clematis were conducted in five European countries. Out of 132 map genotypes, only 11 were associated to FD outbreaks, three were detected in clematis, whereas 127 were detected in alder trees, alder leafhoppers or in grapevines out of FD outbreaks. Most of the alder trees were found infected, including 8% with FD genotypes M6, M38 and M50, also present in alders neighboring FD-free vineyards and vineyard-free areas. The Macropsinae Oncopsis alni could transmit genotypes unable to achieve transmission by S. titanus, while the Deltocephalinae Allygus spp. and Orientus ishidae transmitted M38 and M50 that proved to be compatible with S. titanus. Variability of vmpA and vmpB adhesin-like genes clearly discriminated 3 genetic clusters. Cluster Vmp-I grouped genotypes only transmitted by O. alni, while clusters Vmp-II and-III grouped genotypes transmitted by Deltocephalinae leafhoppers. Interestingly, adhesin repeated domains evolved independently in cluster Vmp-I, whereas in clusters Vmp-II and-III showed recent duplications. Latex beads coated with various ratio of VmpA of clusters II and I, showed that cluster
In recent years, emerging phytoplasma diseases of potato (Solanum tuberosum L.) have increasingly become important in central and eastern Europe. Accurate identification of phytoplasmas and their insect vectors is essential to developing effective management strategies for diseases caused by these plant pathogens. Potato phytoplasma diseases in Europe were for a long time diagnosed only on the basis of visual symptoms. However, this approach is not very reliable and the use of modern molecular techniques such as polymerase chain reaction (PCR) is required in order to accurately determine the etiology of these phytoplasma diseases. A survey and identification of phytoplasmas associated with potato crops in Romania and southern Russia were conducted based on modern molecular techniques. Symptomatic potato plants were collected from several fields and tested for phytoplasmas by PCR.Also, selected crops and weeds in the vicinity of these potato fields were sampled and tested for phytoplasmas. Stolbur ("Candidatus Phytoplasma solani"; 16SrXII-A) was the only phytoplasma detected in potato and adjacent crops, including tomato (Solanum lycopersicum), pepper (Capsicum annuum), eggplant (Solanum melongena), and beet (Beta vulgaris). This phytoplasma was also detected in weeds, particularly Convolvulus arvensis, Cuscuta sp., and Euphorbia falcata. Genotyping of obtained stolbur isolates on tuf genes revealed that they all had the same RFLP profile corresponding to the tuf-type 'b' (VK Type II). Stolbur-affected potato plants produced a large number of spongy tubers that resulted in commercially unacceptable potato chips upon processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.