The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only highpower radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing componentsapproaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated a) Paper AR1 1, Bull. Am. Phys. Soc. 58, 21 (2013). b) Invited speaker.
Abstract. Experimental observations of lower hybrid current drive (LHCD) at high density on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line averaged densities of 10 20 m −3 (ω/ω LH ∼ 3) in single null discharges with large (> 10 mm) plasma-inner wall gaps, well below the density limit previously observed on limited tokamaks (ω/ω LH ∼ 2). Modeling and experimental evidence suggest that the absence of LHCD driven fast electrons at high density may be due to parasitic collisional absorption in the scrape off layer. Experiments show that the population of fast electrons produced by LHCD at high density (n e > 10 20 m −3 ) can be increased significantly by operating with a plasma-inner wall gap of less than ∼ 5 mm with the strongest non-thermal emission in inner-wall limited plasmas. A change in plasma topology from single to double null produces a modest increase in non-thermal emission at high density. Increasing the electron temperature in the periphery of the plasma (0.8 > r/a > 1.0) also results in a modest increase in non-thermal electron emission above the density limit. Ray tracing/Fokker-Planck simulations of these discharges predict the observed sensitivity to plasma position when the effects of collisional absorption in the SOL are included in the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.