We compare numerically the performance of reversible and non-reversible Markov Chain Monte Carlo algorithms for high dimensional oil reservoir problems; because of the nature of the problem at hand, the target measures from which we sample are supported on bounded domains. We compare two strategies to deal with bounded domains, namely reflecting proposals off the boundary and rejecting them when they fall outside of the domain. We observe that for complex high dimensional problems reflection mechanisms outperform rejection approaches and that the advantage of introducing non-reversibility in the Markov Chain employed for sampling is more and more visible as the dimension of the parameter space increases.
One way to quantify the uncertainty in Bayesian inverse problems arising in the engineering domain is to generate samples from the posterior distribution using Markov chain Monte Carlo (MCMC) algorithms. The basic MCMC methods tend to explore the parameter space slowly, which makes them inefficient for practical problems. On the other hand, enhanced MCMC approaches, like Hamiltonian Monte Carlo (HMC), require the gradients from the physical problem simulator, which are often not available. In this case, a feasible option is to use the gradient approximations provided by the surrogate (proxy) models built on the simulator output. In this paper, we consider proxy-aided HMC employing the Gaussian process (kriging) emulator. We overview in detail the different aspects of kriging proxies, the underlying principles of the HMC sampler and its interaction with the proxy model. The proxy-aided HMC algorithm is thoroughly tested in different settings, and applied to three case studies-one toy problem, and two synthetic reservoir simulation models. We address the question of how the sampler performance is affected by the increase of the problem dimension, the use of the gradients in proxy training, the use of proxy-for-the-data and the different approaches to the design points selection. It turns out that applying the proxy model with HMC sampler may be beneficial for relatively small physical models, with around 20 unknown parameters. Such a sampler is shown to outperform both the basic Random Walk Metropolis algorithm, and the HMC algorithm fed by the exact simulator gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.