Magnetic composites with silver nanoparticles bonded to their surface were successfully prepared using a simple chemical method. By means of a sol-gel technique, nickel ferrite nanoparticles have been prepared and coated with silica to control and avoid their magnetic agglomeration. The structural and magnetic properties of the nanoparticles were studied in function of the annealing temperature. Then, silver nanoparticles were incorporated by hydrolysis-condensation of tetraethyl orthosilicate, which contains silver nitrate on the surface of the nickel ferrite-SiO2core/shell. Samples were characterized using X-ray diffraction, IR spectroscopy, SEM, and magnetometry. Results show that the silica covered the nickel ferrite nanoparticles and the silver nanoparticles remain stable in the surface of the composite.
Enhancement in coercivity values of precursor powders of cobalt ferrite embedded in silica xerogel as well as polyaniline was observed using vibrating sample magnetometry. We compared the magnetic properties of pure precursor powders of ferrite cobalt prepared by coprecipitation method and those embedded in xerogel and polyaniline matrix, prepared by sol-gel and by a conventional in situ chemical oxidation polymerization, respectively. The main magnetic effect is the altered coercivity value growing two magnitude orders for the precursor powders of cobalt ferrite embedded in silica xerogel and in polyaniline. The value goes from 52 Oe to 2200 Oe and 1054 Oe for pure coprecipitated precursor powder and embedded in silica xerogel, and embedded in polyaniline, respectively, without any heat-treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.