Two-dimensional unsteady flows in complex geometries that are characterized by simple (low-dimensional) dynamical behavior are considered. Detailed spectral element simulations are performed, and the proper orthogonal decomposition or POD (also called method of empirical eigenfunctions) is applied to the resulting data for two examples: the flow in a periodically grooved channel and the wake of an isolated circular cylinder. Low-dimensional dynamical models for these systems are obtained using the empirically derived global eigenfunctions in the spectrally discretized Navier–Stokes equations. The short- and long-term accuracy of the models is studied through simulation, continuation, and bifurcation analysis. Their ability to mimic the full simulations for Reynolds numbers (Re) beyond the values used for eigenfunction extraction is evaluated. In the case of the grooved channel, where the primary horizontal wave number of the flow is imposed from the channel periodicity and so remains unchanged with Re, the models extrapolate reasonably well over a range of Re values. In the case of the cylinder wake, however, due to the significant spatial wave number changes of the flow with the Re, the models are only valid in a small neighborhood of the decompositional Reynolds number.
We study localized modes in uniform one-dimensional chains of tightly packed and uniaxially compressed elastic beads in the presence of one or two light-mass impurities. For chains composed of beads of the same type, the intrinsic nonlinearity, which is caused by the Hertzian interaction of the beads, appears not to support localized, breathing modes. Consequently, the inclusion of light-mass impurities is crucial for their appearance. By analyzing the problem's linear limit, we identify the system's eigenfrequencies and the linear defect modes. Using continuation techniques, we find the solutions that bifurcate from their linear counterparts and study their linear stability in detail. We observe that the nonlinearity leads to a frequency dependence in the amplitude of the oscillations, a static mutual displacement of the parts of the chain separated by a defect, and for chains with two defects that are not in contact, it induces symmetry-breaking bifurcations.
It is well known that most gas fluidized beds of particles bubble, while most liquid fluidized beds do not. It was shown by Anderson, Sundaresan & Jackson (1995), through direct numerical integration of the volume-averaged equations of motion for the fluid and particles, that this distinction is indeed accounted for by these equations, coupled with simple, physically credible closure relations for the stresses and interphase drag. The aim of the present study is to investigate how the model equations afford this distinction and deduce an approximate criterion for separating bubbling and nonbubbling systems. To this end, we have computed, making use of numerical continuation techniques as well as bifurcation theory, the one-and two-dimensional travelling wave solutions of the volume-averaged equations for a wide range of parameter values, and examined the evolution of these travelling wave solutions through direct numerical integration. It is demonstrated that whether bubbles form or not is dictated by the value of Ω l (ρ s $ t \Ag)" /# , where ρ s is the density of particles, t is the terminal settling velocity of an isolated particle, g is acceleration due to gravity and A is a measure of the particle phase viscosity. When Ω is large ( " 30), bubbles develop easily. It is then suggested that a natural scale for A is ρ s t d p , so that Ω# is simply a Froude number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.