ObjectivesIn order to investigate the applicability of routine 10s electrocardiogram (ECG) recordings for time-domain heart rate variability (HRV) calculation we explored to what extent these (ultra-)short recordings capture the “actual” HRV.MethodsThe standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive differences (RMSSD) were measured in 3,387 adults. SDNN and RMSSD were assessed from (ultra)short recordings of 10s(3x), 30s, and 120s and compared to 240s–300s (gold standard) measurements. Pearson’s correlation coefficients (r), Bland-Altman 95% limits of agreement and Cohen’s d statistics were used as agreement analysis techniques.ResultsAgreement between the separate 10s recordings and the 240s-300s recording was already substantial (r = 0.758–0.764/Bias = 0.398–0.416/d = 0.855–0.894 for SDNN; r = 0.853–0.862/Bias = 0.079–0.096/d = 0.150–0.171 for RMSSD), and improved further when three 10s periods were averaged (r = 0.863/Bias = 0.406/d = 0.874 for SDNN; r = 0.941/Bias = 0.088/d = 0.167 for RMSSD). Agreement increased with recording length and reached near perfect agreement at 120s (r = 0.956/Bias = 0.064/d = 0.137 for SDNN; r = 0.986/Bias = 0.014/d = 0.027 for RMSSD). For all recording lengths and agreement measures, RMSSD outperformed SDNN.ConclusionsOur results confirm that it is unnecessary to use recordings longer than 120s to obtain accurate measures of RMSSD and SDNN in the time domain. Even a single 10s (standard ECG) recording yields a valid RMSSD measurement, although an average over multiple 10s ECGs is preferable. For SDNN we would recommend either 30s or multiple 10s ECGs. Future research projects using time-domain HRV parameters, e.g. genetic epidemiological studies, could calculate HRV from (ultra-)short ECGs enabling such projects to be performed at a large scale.
Five years after RRSO, BMD and fracture incidence were not different than expected from the general population. Based on these data it appears safe not to intensively screen for osteoporosis within five years after RRSO, although prospective research on the long-term effects of RRSO on bone is warranted.
BackgroundRisk-reducing salpingo-oophorectomy (RRSO) reduces ovarian cancer risk in BRCA1/2 mutation carriers. Premenopausal RRSO is hypothesized to increase fracture risk more than natural menopause. Elevated bone turnover markers (BTMs) might predict fracture risk. We investigated BTM levels after RRSO and aimed to identify clinical characteristics associated with elevated BTMs.MethodsOsteocalcin (OC), procollagen type I N-terminal peptide (PINP) and serum C-telopeptide of type I collagen (sCTx) were measured in 210 women ≥ 2 years after RRSO before age 53. BTM Z-scores were calculated using an existing reference cohort of age-matched women. Clinical characteristics were assessed by questionnaire.ResultsBTMs after RRSO were higher than age-matched reference values: median Z-scores OC 0.11, p = 0.003; PINP 0.84, p < 0.001; sCTx 0.53, p < 0.001 (compared to Z = 0). After excluding women with recent fractures or BTM interfering medication, Z-scores increased to 0.34, 1.14 and 0.88, respectively. Z-scores for OC and PINP were inversely correlated to age at RRSO. No correlation was found with fracture incidence or history of breast cancer.ConclusionsFive years after RRSO, BTMs were higher than age-matched reference values. Since elevated BTMs might predict higher fracture risk, prospective studies are required to evaluate the clinical implications of this finding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.