A plane problem for a crack between two anisotropic semi-infinite spaces under remote tensile-shear loading is considered. In the framework of the assumption that the crack faces are free of stresses an exact analytical solution of the problem is given on basis of the complex potentials approach. This solution possesses oscillating square root singularities in stresses and in the derivatives of the displacement jumps at the crack tips. To remove these singularities a new model founded on the introduction of the shear yield zones at the crack tips is suggested. This model is appropriate for the cases where interface adhesive layer is softer than the surrounding matrixes. Under this assumption the problem is reduced to the nonhomogeneous combined Dirichlet-Riemann boundary value problem with the conditions at infinity. An exact analytical solution of this problem is presented for the case of a single yield zone. The length of this zone is found from the finiteness of the shear stress at the end point of the zone. Due to such simulation the shear stress becomes finite at any point and the normal stress possesses only square root singularity at the crack tip. Therefore, the conventional stress intensity factor of the normal stress at the crack tip is used. The numerical illustration of the obtained solution is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.