Rangka merupakan bagian yang paling penting dari sebuah konstruksi dimana kekuatan rangka sangat ditentukan dari bentuk dan dimensi. Kekuatan rangka pada konstruksi harus memenuhi aspek keamanan serta harus memperhatikan faktor kekuatan rangka itu sendiri. Menghitung kekuatan rangka dari alat pembuat briket sampah organik dilakukan dengan menggunakan cara simulasi untuk mengetahui kekuatan rangka dalam menerima beban. Simulasi yang dilakukan dengan menggunakan software SolidWorks 19 dengan pembebanan statis, dan dengan variasi beban 110 kg dan 4500 kg dengan menggunakan material baja tipe ASTM A36. Proses simulasi yang telah dilakukan dengan pembebanan 110 kg nilai tegangan maksimum sebesar 6.66046 N/mm2 (Mpa), nilai displacement maksimum sebesar 0.0114 mm, nilai strain maksimum sebesar 0.0000167973 mm, dan nilai safety factor minimal sebesar 38. Dengan pembebanan 4500 kg nilai tegangan maksimum sebesar 248.26596 N/mm2 (Mpa), nilai displacement maksimum sebesar 0.4231 mm, nilai strain maksimum sebesar 0.0006269075 mm, dan nilai safety factor minimal sebesar 1. Pembebanan 110 kg rangka masih dapat menahan beban dan nilai stress masih jauh dari standar yield strength material ASTM A36 sebesar 250 Mpa. Terdapat perubahan bentuk rangka saat dilakukan pembebanan tetapi masih bersifat elastis, pada pembebanan 4500 kg rangka tidak dapat menahan beban dan nilai stress mendekati standar yield strength material ASTM A36 sebesar 250 Mpa. Hasil simulasi menunjukkan bahwa rangka alat pembuat briket sampah organik dengan beban 110 kg dan dengan material Baja tipe ASTM A36 mampu menahan beban dengan lebih baik. Dibandingkan dengan beban 4500 kg dan dengan material yang sama. The frame is the most important part of a construction where the strength of the frame is very much determined from the shape and dimensions. The strength of the frame in construction must fulfill the safety aspect and pay attention to the strength factor of the frame itself. Calculating the strength of the frame from the organic waste briquette maker is done by using a simulation method to see the strength of the frame in receiving the load. Simulations carried out using solidWorks 19 software with static loading with a load variation of 110kg and 4500 kg using ASTM A36. The simulation process that has been carried out with a load of 110 kg with a maximum stress value of 6.66046 N / mm2 (Mpa), a maximum displacement value of 0.0114 mm, a maximum strain value of 0.0000167973 mm, and a minimum safety factor value of 38. At the load of 4500 kg the maximum stress value is 248.26596 N/mm2 (Mpa), the maximum displacement value is 0.4231 mm, the maximum strain value is 0.0006269075 mm, and the safety factor value is at least 1. A load of 110 kg the frame can still with stand the load and the stress value is still far from the standard yield strength material ASTM A36 of 250 Mpa. There is a change in the shape of the frame when it is charged but still elastic, at the load of 4500 kg the frame cannot with stand the load and the stress value is close to the standard yield strength material ASTM A36 of 250 Mpa. Simulation results showed that the frame of the organic waste briquette making tool with a load of 110 kg and with steel material type ASTM A36 is able to with stand the load better. Compared to a load of 4500 kg and with the same material.
Solidification is an essential part of casting process. This is a change process range from liquid phase into solid phase. Difference of solidification rate affects the needed time to change liquid phase into solid phase as well as the release of latent heat. This study aimed at reviewing solidification characteristic of Cu-20%Sn Bronze Alloys as Balinese gamelan materials during casting process by using sand and metal molds. Pure commercial copper (Cu) and white tin (Sn) were melted in crucible furnace until 1000°C. The melted metal was poured into sand and metal molds. History of solidification temperature was measured and recorded by using thermocouple type K which was directly connected to computer equipped with data acquisition system. The results of this study showed that the solidification rate of casting process in metal molds faster than sollidification rate on using sand molds. Finer dendrites with multiple branches are formed on casting on metal molds than compared that dendrite forms that produced on castings by sand molds
One of the typical Balinese culinary tours is Pig Rollers. The process of making pig guling still on human power in the rolling process by doing a continuous circular motion. This study aims to determine the decrease in fatigue, musculoskeletal complaints, heat radiation, and increase in productivity before and after treatment of pig roller workers due to the application of ergonomics applications in the form of repairing work stations. The method used in this study is an experimental (true experimental) with the same subject design (treatment by subject design) and a randomized pre and post-test group design pattern of variables in the form of worker fatigue which is recorded with a 30 Items of Rating Scale of General Fatigue questionnaire; musculoskeletal complaints of workers who were recorded with the Nordic Body Map questionnaire; heat radiation measured with 4ch K Thermometer SD Logger; and the productivity of pig rolling workers is assessed based on the output (weight of the product produced) divided by the input (work pulse) multiplied by time (time). Measurements were carried out before and after working in Period I and Period II on 12 samples for 1 month. The data obtained will be analyzed by paired t-tests at a significance level of 5%. The results showed that there were significant differences (p<0.05) in workload, fatigue, musculoskeletal complaints, heat radiation, and work productivity in Period I and Period II. Ergonomics application in the form of work station improvement reduces workload by 10.22%, fatigue by 13.46%, musculoskeletal complaints by 33.61%, heat radiation by 11.81%, and increases productivity by 78.50%. It can be concluded that the application of ergonomics in the form of repairing work stations can reduce workload, fatigue, musculoskeletal complaints, and radiation, and increase the productivity of pig rolling workers in Peliatan Village,
Kondensor merupakan salah satu komponen penukar panas yang berfungsi untuk membuang panas dari fluida uap air (steam) pada sebuah sistem pembangkit listrik tenaga gas dan uap (PLTGU). Namun komponen kondensor ini memiliki dimensi yang cukup besar sehingga memerlukan lahan yang luas. Penelitian ini dilakukan untuk mendapatkan dimensi kondensor yang lebih ringkas (compact) yang memerlukan lahan yang sedikit dalam penerapannya dilapangan. Desain Compact kondensor diawali dengan pengambilan data dilapangan, menghitung efisiensi kondensor awal (0,44), dan proses simulasi pada aplikasi CFD desain kondensor exisiting untuk mengetahui gambara dari proses perpindahan panas yang terjadi. Proses perhitungan untuk desain compact kondensor dilakukan untuk mendapatkan ukuran dimensi dan kinerja compact kondensor. Dari hasil perhitungan desain yang dilakukan didapatkan dimensi compact kondensor dengan panjang : 2 ft = 0,6096 m, lebar : 1 ft = 0,3048 m, dan tinggi 8 ft = 2,4384 m, dengan Volume Compact kondensor = 16 ft3 = 4,8768 m3, Efisiensi Sirip : 0.924027, Efisiensi Sirip Overall: 0.936563, Efisiensi kondensor : 0.60, Pressure Drop Sisi uap : 0,5184 Bar, Pressure Drop Sisi air : 1,4734 Bar, Daya Sisi uap : 70.43555 Watt, Daya Sisi air : 25.03529 Watt. Nilai efisiensi yang dihasilkan dari desain compact kondensor lebih tinggi dibandingkan dengan kondensor awal dengan dimensi yang lebih kecil. The condenser is one of the heat exchanger components that functions to remove heat from the water vapor fluid (steam) in a gas and steam power plant (PLTGU) system. However, this condenser component has dimensions large enough to require a large area. This research was conducted to obtain a condenser dimension that is more compact (compact) which requires less land in its application in the field. Compact condenser design begins with data collection in the field, calculating the efficiency of the initial condenser (0.44), and the simulation process in the application of the exisiting condenser CFD design to find out the details of the heat transfer process that occurs. The calculation process for compact condenser design is carried out to get the dimensions and compact condenser size. From the results of design calculations performed, the dimensions of the compact condenser with length: 2 ft = 0.6096 m, width: 1 ft = 0.3048 m, and height 8 ft = 2.4384 m, with condenser Compact Volume = 16 ft3 = 4 , 8768 m3, Fin Efficiency: 0.924027, Overall Fin Efficiency: 0.936563, Condenser efficiency: 0.60, Pressure Drop Vapor side: 0.5184 Bar, Pressure Drop Water side: 1.4734 Bar, Steam Side Power: 70.43555 Watt, Water Side Power : 25,03529 Watt. The efficiency value resulting from the compact condenser design is higher than the initial condenser with smaller dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.