Use of improved (biomass) cookstoves (ICs) has been widely proposed as a Black Carbon (BC) mitigation measure with significant climate and health benefits. ICs encompass a range of technologies, including natural draft (ND) stoves, which feature structural modifications to enhance air flow, and forced draft (FD) stoves, which additionally employ an external fan to force air into the combustion chamber. We present here, under Project Surya, the first real-time in situ Black Carbon (BC) concentration measurements from five commercial ICs and a traditional (mud) cookstove for comparison. These experiments reveal four significant findings about the tested stoves. First, FD stoves emerge as the superior IC technology, reducing plume zone BC concentration by a factor of 4 (compared to 1.5 for ND). Indoor cooking-time BC concentrations, which varied from 50 to 1000 μg m(-3) for the traditional mud cookstove, were reduced to 5-100 μg m(-3) by the top-performing FD stove. Second, BC reductions from IC models in the same technology category vary significantly: for example, some ND models occasionally emit more BC than a traditional cookstove. Within the ND class, only microgasification stoves were effective in reducing BC. Third, BC concentration varies significantly for repeated cooking cycles with same stove (standard deviation up to 50% of mean concentration) even in a standardized setup, highlighting inherent uncertainties in cookstove performance. Fourth, use of mixed fuel (reflective of local practices) increases plume zone BC concentration (compared to hardwood) by a factor of 2 to 3 across ICs.
Improved cookstoves (ICS) can deliver “triple wins” by improving household health, local environments, and global climate. Yet their potential is in doubt because of low and slow diffusion, likely because of constraints imposed by differences in culture, geography, institutions, and missing markets. We offer insights about this challenge based on a multiyear, multiphase study with nearly 1,000 households in the Indian Himalayas. In phase I, we combined desk reviews, simulations, and focus groups to diagnose barriers to ICS adoption. In phase II, we implemented a set of pilots to simulate a mature market and designed an intervention that upgraded the supply chain (combining marketing and home delivery), provided rebates and financing to lower income and liquidity constraints, and allowed households a choice among ICS. In phase III, we used findings from these pilots to implement a field experiment to rigorously test whether this combination of upgraded supply and demand promotion stimulates adoption. The experiment showed that, compared with zero purchase in control villages, over half of intervention households bought an ICS, although demand was highly price-sensitive. Demand was at least twice as high for electric stoves relative to biomass ICS. Even among households that received a negligible price discount, the upgraded supply chain alone induced a 28 percentage-point increase in ICS ownership. Although the bundled intervention is resource-intensive, the full costs are lower than the social benefits of ICS promotion. Our findings suggest that market analysis, robust supply chains, and price discounts are critical for ICS diffusion.
Improved cook stoves (ICS) have been widely touted for their potential to deliver the triple benefits of improved household health and time savings, reduced deforestation and local environmental degradation, and reduced emissions of black carbon, a significant short-term contributor to global climate change. Yet diffusion of ICS technologies among potential users in many low-income settings, including India, remains slow, despite decades of promotion. This paper explores the variation in perceptions of and preferences for ICS in Uttar Pradesh and Uttarakhand, as revealed through a series of semi-structured focus groups and interviews from 11 rural villages or hamlets. We find cautious interest in new ICS technologies, and observe that preferences for ICS are positively related to perceptions of health and time savings. Other respondent and community characteristics, e.g., gender, education, prior experience with clean stoves and institutions promoting similar technologies, and social norms as perceived through the actions of neighbours, also appear important. Though they cannot be considered representative, our results suggest that efforts to increase adoption and use of ICS in rural India will likely require a combination of supply-chain improvements and carefully designed social marketing and promotion campaigns, and possibly incentives, to reduce the up-front cost of stoves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.