In this study we report on the synthesis, kinetic characterization and application of a novel biotinylated and active-site-directed inactivator of cathepsin B. Thus the peptidyldiazomethane biotinyl-Phe-Ala-diazomethane has been synthesized by a combination of solid-phase and solution methodologies and has been shown to be a very efficient inactivator of bovine and human cathepsin B. The respective apparent second-order rate constants (k0bs./[I]) for the inactivation of the human and bovine enzymes by this reagent, namely approximately 5.4 x 10(4) M-1.min-1 and approximately 7.8 x 10(4) M-1.min-1, compare very favourably with those values determined for the urethane-protected analogue benzyloxycarbonyl-Phe-Ala-chloromethane first described by Green & Shaw [(1981) J. Biol. Chem. 256, 1923-1928], thus demonstrating that the presence of the biotin moiety at the P3 position is compatible with inhibitor effectiveness. The utilization of this reagent for the detection of cathepsin B in electrophoretic gels, using Western blotting and in combination with a streptavidin/alkaline phosphatase detection system, is also demonstrated. Given that the peptidyldiazomethanes exhibit a pronounced reactivity towards cysteine proteinases, we feel that the present label may well constitute the archetypal example of a wide range of reagents for the selective labelling of this class of proteinase, even in a complex biological milieu containing additional classes of proteinases.
In this report we demonstrate how the recently developed biotinylated affinity label biotinyl-Phe-Ala-diazomethane (Bio-Phe-Ala-CHN2) [Cullen, McGinty, Walker, Nelson, Halliday, Bailie & Kay (1990) Biochem. Soc. Trans. 18, 315-316; Walker, Cullen, Kay, Halliday, McGinty & Nelson (1992) Biochem. J. 283, 449-453] can be used for the detection of a precursor form of a cathepsin B-like enzyme produced by breast-tumour cells in culture. Thus the cell lines MDA-MB-436, ZR-75-1 and T47-D produce a soluble protein that can be allowed to react with the biotinylated affinity label to yield an SDS-resistant complex; this can be revealed with a streptavidin/alkaline phosphatase label after PAGE and Western blotting. This protein (molecular mass 47 kDa) can also be detected by immunoblotting using sheep anti-(cathepsin B) antibodies in conjunction with a donkey anti-sheep IgG label. None of the cell lines studied produced any mature cathepsin B-like activity, as gauged by the lack of turnover of the fluorogenic substrate benzyloxycarbonyl-Arg-Arg-4-methylcoumarin-7-ylamide (Cbz-Arg-Arg-NH-Mec). However, treatment of medium samples with pepsin resulted in the generation of such activity. When the pepsin-catalysed activation step was analysed by SDS/PAGE, the protein of 47 kDa was completely converted into two species of very similar molecular masses of 30.5 kDa and 29 kDa. Both these proteins can incorporate the biotinylated probe and, in common with the 47 kD species, they can be detected with the streptavidin/alkaline phosphatase label and immunoblotting. We propose that the 47 kD form is the pepsin-activable proform of these lower-molecular-mass species. The release of the proform from the oestrogen-receptor (ER)-positive breast-tumour cell lines ZR-75-1 and T47-D is stimulated 5-10-fold when these cells are grown in medium containing epidermal growth factor (EGF) at a concentration of 10 ng/ml. In contrast, there is no modulation in the amount of proform released by the ER-negative cell line MDA-MB-436, over a range of EGF concentrations from 0 to 100 ng/ml.
The synthesis of two biotinylated affinity labels for chymotrypsin and trypsin-like serine proteinases is described, along with their kinetic characterization and application to the detection of these proteinases after PAGE and Western blotting. Thus the chloromethane analogues biotinylphenylalanylchloromethane (Bio-Phe-CH2Cl; reagent 1) and biotinylarginylchloromethane (Bio-Arg-CH2Cl, reagent 2), have been shown to be potent active-site-directed inactivators of chymotrypsin and trypsin respectively. The apparent overall second-order rate constants (kobs./[I]) for the inactivation of chymotrypsin and trypsin by reagent 1 (-4.9 x 103 M-1 min-') and reagent 2 (-1.0 x 105 M-1 min-') respectively are comparable with those obtained by other workers with simple urethane-protected analogues and demonstrates that the presence of the bulky biotinyl moiety is compatable with inhibitor effectiveness. Samples of chymotrypsin and trypsin that have been inactivated by reagents 1 and 2 respectively and which have been subjected to SDS/PAGE and Western blotting can be revealed with a streptavidin/alkaline phosphatase label. We can presently detect down to 20 ng of inactivated proteinase by using this system. The utility of the arginine derivative for the detection of the plasma trypsin-like proteinases plasmin and thrombin has also been demonstrated, thus holding out the possibility that this reagent may find general application as an active-site-directed label for this class of proteinase.
632nd MEETING, CORK 315 25 concentrations of 6.5 M and 8.0 M, respectively (compared with 4.2 M and 6.7 M for the enzymes in solution). Papain has been shown to be remarkably resistant t o denaturation IS] and in the present study both soluble and immobilized papain showed full retention o f activity in urea up to a con--\ 25
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.